
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018 765

Off-Path TCP Exploits of the Challenge
ACK Global Rate Limit

Yue Cao , Zhiyun Qian, Zhongjie Wang, Tuan Dao , Srikanth V. Krishnamurthy, and Lisa M. Marvel

Abstract— In this paper, we report a subtle yet serious side
channel vulnerability (CVE-2016-5696) introduced in a recent
transmission control protocol (TCP) specification. The specifi-
cation is faithfully implemented in Linux kernel version 3.6
(from 2012) and beyond, and affects a wide range of devices
and hosts. In a nutshell, the vulnerability allows a blind off-
path attacker to infer if any two arbitrary hosts on the Internet
are communicating using a TCP connection. Further, if the
connection is present, such an off-path attacker can also infer the
TCP sequence numbers in use, from both sides of the connection;
this in turn allows the attacker to cause connection termination
and perform data injection attacks. We illustrate how the attack
can be leveraged to disrupt or degrade the privacy guarantees of
an anonymity network such as Tor, and perform web connection
hijacking. Through extensive experiments, we show that the
attack is fast and reliable. On average, it takes about 40 to 60 s
to finish and the success rate is 88% to 97%. Finally, we propose
changes to both the TCP specification and implementation to
eliminate the root cause of the problem.

Index Terms— Network security, side-channel attacks,
transmission control protocol IP (TCPIP)

I. INTRODUCTION

TRANSMISSION control protocol (TCP) and network-
ing stacks have recently been shown to leak various

types of information via side channels, to a blind off-path
attacker [7], [14], [15], [17], [24], [26], [34]. However, it is
generally believed that an adversary cannot easily know
whether any two arbitrary hosts on the Internet are com-
municating using a TCP connection without being on the
communication path. It is further believed that such an off-path
attacker cannot tamper with or terminate a connection between
such arbitrary hosts. In this work, we challenge this belief
and demonstrate that it can be broken due to a subtle yet
serious side channel vulnerability introduced in the latest TCP
specification.

The two most relevant research efforts are the following:
1) In 2012, Qianand MAO, and Qian et al. [26] and [27],
framed the so called “TCP sequence number inference attack”,
which can be launched by an off-path attacker. However,
the attack requires a piece of unprivileged malware to
be running on the client to assist the off-path attacker;
this greatly limits the scope of the attack. 2) In 2014,

Manuscript received August 8, 2017; revised December 12, 2017; accepted
January 11, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor Saverio Mascolo. Date of publication February 2, 2018; date of
current version April 16, 2018. This work was supported in part by the Army
Research Laboratory under Cooperative Agreement W911NF-13-2-0045
and in part by the National Science Foundation under Grant 1464410.
(Corresponding author: Yue Cao.)

Y. Cao, Z. Qian, Z. Wang, T. Dao, and S. V. Krishnamurthy are
with the University of California at Riverside, Riverside, CA 92521 USA
(e-mail: ycao009@cs.ucr.edu; zhiyunq@cs.ucr.edu; zwang048@cs.ucr.edu;.
tdao006@cs.ucr.edu; krish@cs.ucr.edu).

L. M. Marvel is with the U.S. Army Research Laboratory, Adelphi, MD
20783 USA (e-mail: lisa.m.marvel.civ@mail.mil).

Digital Object Identifier 10.1109/TNET.2018.2797081

Knockel and Crandall [24], identified a side channel that
allows an off-path attacker to count the packets sent between
two arbitrary hosts. The limitation is that the proposed attack
requires on average, an hour of preparation time and works
at the IP layer only (cannot count how many packets are sent
over a specific TCP connection).

In this paper,1 we discover a much more powerful off-path
attack that can quickly 1) test whether any two arbitrary
hosts on the Internet are communicating using one or more
TCP connections (and discover the port numbers associated
with such connections); 2) perform TCP sequence number
inference which allows the attacker to subsequently, forcibly
terminate the connection or inject a malicious payload into the
connection. We emphasize that the attack can be carried out
by a purely off-path attacker without running malicious code
on the communicating client or server. This can have serious
implications on the security and privacy of the Internet at large.

The root cause of the vulnerability is the introduction
of the challenge ACK responses [31] and the global rate
limit imposed on certain TCP control packets. The feature
is outlined in RFC 5961, which is implemented faithfully in
Linux kernel version 3.6 from late 2012. At a very high level,
the vulnerability allows an attacker to create contention on
a shared resource, i.e., the global rate limit counter on the
target system by sending spoofed packets. The attacker can
then subsequently observe the effect on the counter changes,
measurable through probing packets.

Through extensive experimentation, we demonstrate that
the attack is extremely effective and reliable. Given any two
arbitrary hosts, it takes only 10 seconds to successfully infer
whether they are communicating. If there is a connection,
subsequently, it takes also only tens of seconds to infer the
TCP sequence numbers used on the connection. To demon-
strate the impact, we perform case studies on a wide range of
applications.

The contributions of the paper are the following:
• We discover and report a serious vulnerability uninten-

tionally introduced in the latest TCP specification which
is subsequently implemented in the latest Linux kernel.

• We design and implement a powerful attack exploit-
ing the vulnerability to infer 1) whether two hosts are
communicating using a TCP connection; 2) the TCP
sequence number currently associated with both sides of
the connection.

• We provide a thorough analysis and evaluation of the
proposed attack. We present case studies to illustrate the
attack impact.

• We identify the root cause of the subtle vulnerability and
discuss how it can be prevented in the future. We propose
changes to the kernel implementation to eliminate or mit-
igate the side channel.

1This is an extended version of our paper published in USENIX security
2016 [11]

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5826-3095
https://orcid.org/0000-0001-6451-819X

766 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 1. Threat model 1.

Fig. 2. Alternative threat model.

II. BACKGROUND

Security was not the primary concern in the design of TCP.
There have been many security patches over the years at both
the specification and implementation level. Interestingly, most
new specifications are well thought out and typically improve
security. Unfortunately, as we discover, one of the most recent
specifications intended to improve security creates an even
more serious vulnerability.

In this section, we first present the threat model that is being
addressed in RFC 5961 and how the new specification is sup-
posed to protect against blind in-window attacks. In the next
section, we will show that how this specification introduces a
new vulnerability.

Threat Model: As illustrated in Figure 1, a realistic threat
model for TCP is off-path attacks. There are three hosts
involved: a victim client, a victim server and an off-path
attacker. Any machine might act as the attacker in this model
as long as its ISP allows the off-path attacker to send packets
to the server with the spoofed IP address of the victim client.
Alternatively, as shown in Figure 2, the off-path attacker is
able to send packets to the client with the spoofed IP address
of the victim server.

Blind In-Window Attacks: Under the above threat models,
the most common attacks considered are “blind in-window
attacks” where an off-path attacker sends spoofed TCP packets
with guessed sequence numbers in an attempt to achieve
DoS or data injection attacks. To succeed in such an attack,
it is necessary to first know the target 4-tuple <src IP,
dst IP, src port, dst port> of an ongoing TCP connection
between a client and a server.2 Once the correct 4-tuple is
known, if the guessed sequence number of the spoofed packet
happens to fall in the receive window, (called an in-window
sequence number), one can in fact reset or inject acceptable
malicious data into the connection. To be more precise, an
in-window sequence number is one that satisfies the follow-
ing condition, (RCV.NXT ≤ SEG.SEQ ≤ RCV.NXT +
RCV.WND), where SEG.SEQ is the guessed sequence
number, RCV.NXT and RCV.WND are the sequence num-
ber of the next byte that the receiver expects to receive, and
the receive window size, respectively. To carry out a blind
attack, one typically needs to blast the entire sequence number

2This can be achieved, among other methods, through brute-force attempts.

space by sending a large sequence of spoofed packets. In this
sequence, the sequence number of a packet is larger than that
of its predecessor by a window size.

To defend against such attacks, RFC 5961 proposes several
modifications on how TCP should process incoming packets,
We highlight only the necessary details below.

A. Mitigating the Blind Reset Attack Using the SYN Bit

An attacker might tear down an existing TCP connection
by injecting SYN packets (TCP packets in which the SYN
flag is set). This is because a valid SYN packet will cause
the receiver to believe that the sender has restarted and thus,
the connection should be reset.

In the former (pre-RFC 5961) Linux kernel versions,
an incoming SYN packet is processed as follows:

• If the sequence number is outside the valid receive
window, the receiver will send an ACK back to sender.

• If the sequence number is in-window, the receiver will
reset this connection.

It is obvious that the attacker only needs a single SYN packet
with an in-window sequence number to reset an ongoing
TCP connection. Instead, RFC 5961 proposes modifications
in processing the SYN packets as follows:

• If a receiver sees an incoming SYN packet, regardless of
the sequence number, it sends back an ACK (referred to
as a challenge ACK) to the sender to confirm the loss of
the previous connection.

• If the packet is indeed initiated from the legitimate remote
peer, it must have truly lost the previous connection and
is now attempting to initiate a new one. Upon receiving
the challenge ACK, the remote peer will send a RST
packet with the correct sequence number (derived from
the ACK field of the challenge ACK packet) to prove that
the previous connection is indeed terminated.

Hence, if the SYN packet is a spoofed one, it can no longer
terminate a connection with an in-window sequence number.

B. Mitigating the Blind Reset Attack Using the RST Bit

An attacker might also tear down the connection by injecting
RST packets (TCP packets in which the RST flag is set) into
an ongoing TCP connection.

In pre-RFC 5961 Linux kernels, just like in the SYN packet
case, a RST packet can terminate a connection successfully as
long as its sequence number is in-window. RFC 5961 suggests
the following changes:

• If the sequence number is outside the valid receive
window, the receiver simply drops the packet. No modi-
fications are proposed for this case.

• If the sequence number exactly matches the next expected
sequence number (RCV.NXT), the connection is reset.

• If the sequence number is in-window but does not exactly
match RCV.NXT , the receiver must send a challenge
ACK packet to the sender, and drop the unacceptable
RST packet.

In the final case, if the sender is legitimate, it sends back a RST
packet with the correct sequence number (derived from the
ACK number in the challenge ACK) to reset the connection.
On the other hand, if the RST is spoofed, the challenge
ACK packet will not be observable by the off-path attacker.
Therefore, the attacker needs to be extremely lucky to be able
to succeed — only one out of 232 sequence numbers will be
accepted.

CAO et al.: OFF-PATH TCP EXPLOITS OF THE CHALLENGE ACK GLOBAL RATE LIMIT 767

Fig. 3. ACK window illustration.

C. Mitigating the Blind Data Injection
An attacker might corrupt the contents of a transmission

by injecting spoofed DATA packets. When a packet arrives,
the receiver first checks the sequence number to make sure it
is in-window; in addition, the ACK number will be checked.
Pre-RFC 5961, the ACK number is considered valid as long
as it falls in the wide range of [SND.UNA − (231 − 1),
SND.NXT]; this is effectively half of the ACK number
space. Here, SND.UNA is the sequence number of the first
unacknowledged byte. SND.NXT is the sequence number
of the next byte about to be sent.

RFC 5961 suggests a much smaller valid ACK number
range of [SND.UNA−MAX.SND.WND, SND.NXT],
where MAX.SND.WND is the maximum window size
the receiver has ever seen from its peer. This is illustrated
in Figure 3. The reasoning is that the only valid ACK numbers
are those that are (i) not too old (bytes that are recently
sent) and (ii) not too new (receiver cannot ACK bytes that
are yet to be sent). The remaining ACK values will be
in the range of [SND.UNA − (231 − 1), SND.UNA −
MAX.SND.WND), denoted as the challenge ACK window.
Even though ACK numbers inside this window are still
considered invalid, the specification requires the receiver to
generate outgoing challenge ACKs in response to packets
with such ACK numbers. Overall, this more stringent ACK
number check does not eliminate, but helps dramatically
reduce the probability that invalid data is successfully injected.
Specifically, if the MAX.SND.WND is small (which is
typically the case for most connections), then the acceptable
ACK window will be much smaller than the half of the ACK
number space (as illustrated in Figure 3).

D. ACK Throttling
In general, as explained earlier, RFC 5961 enforces a

much stricter check on incoming TCP packets; for example,
it requires the RST packets to have an exact sequence number
to actually reset the connection, whereas a “good enough”
in-window value only triggers a challenge ACK. In order
to reduce the number of challenge ACK packets that waste
CPU and bandwidth resources, an ACK throttling mechanism
is also proposed. Specifically, the system administrator can
configure the maximum number of challenge ACKs that can
be sent out in a given interval (say, 1 second). The RFC
clearly states “An implementation SHOULD include an ACK
throttling mechanism to be conservative.” Therefore, the Linux
kernel has faithfully implemented this feature by storing the
challenge ACK counter in a global variable shared by all TCP
connections. This approach, unfortunately, creates an undesir-
able side channel, as will be elaborated. We emphasize that
the RFC states that ACK throttling applies to only challenge
ACKs and not to regular ACKs. This means that the challenge
ACK counter is unlikely to be affected by legitimate ACK

Fig. 4. Connection (four-tuple) test.

traffic as the conditions that trigger challenge ACKs are all
considered rare or due to attacks.

III. VULNERABILITY OVERVIEW

The Linux kernel first implemented all the features sug-
gested in RFC 5961, in version 3.6 in September 2012. The
changes were backported to certain prior distributions as well.
The ACK throttling feature is specifically implemented as fol-
lows: a global system variable sysctl_tcp_challenge_
ack_limit was introduced to control the maximum number
of challenge ACKs generated per second. It is set to 100 by
default. As this limit is shared across all connections (possibly
including the connections established with the attacker), the
shared state can be exploited as a side channel.

Assuming we follow the threat model in Figure 1, the basic
idea is to repeat the following steps: 1) send spoofed packets to
the connection under test (with a specific four-tuple), 2) create
contention on the global challenge ACK rate limit, i.e., by
creating a regular connection from the attacker to the server
and intentionally triggering the maximum allowed challenge
ACKs per second, and 3) count the actual number of challenge
ACKs received on that connection. If this number is less than
the system limit, some challenge ACKs must have been sent
over the connection under test, as responses to the spoofed
packets.

Depending on the types of spoofed packets sent in step 1,
the off-path attacker can infer 1) if a connection specified by
its four-tuple exists; 2) the next expected sequence number
(RCV.NXT) on the server (or client); 3) the next expected
ACK number (SND.UNA) on the server (or client). It is
intriguing to realize that the three information leakages are
enabled by the three (and only three) conditions that trigger
challenge ACKs as described in §II-A, §II-B, and §II-C,
respectively.

We elaborate below, the intuition on how the inference can
be done in each case.

Connection (Four-Tuple) Inference: Figure 4 shows the
sequence of packets that an off-path attacker can send to
differentiate between the cases of (i) the presence or (ii) the
absence of an ongoing connection. In both cases, the attacker
sends the same sequence of packets. Dashed lines represent
packets with spoofed IP addresses. In the figure, the initial
SYN-ACK packet is spoofed so that it appears to come from
the client. The counter for the number of challenge ACKs
that can be issued (100 initially) is tracked and depicted on
the timeline of the server.

The hope is that the initial spoofed SYN-ACK packet will
hit a correct four-tuple that corresponds to an active connection
between the client and the server. In such a case (the left

768 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 5. Sequence number test.

of Figure 4) the server will reply with a challenge ACK3

(in accordance with the countermeasure proposed to defend
against blind SYN packet injection as described in §II-A).
At the same time, this will reduce the global challenge
ACK count from 100 to 99. In the case where the spoofed
SYN-ACK does not hit a correct four-tuple (on the right of
the figure), the server will simply reply with a RST back to
the corresponding client (as per TCP standards).

The attacker will then send 100 non-spoofed in-window
RST packets to exhaust the challenge ACK count (this behav-
ior is described in §II-B). In the active connection case,
since the challenge ACK count is 99, the attacker can now
observe only 99 challenge ACKs. In the no connection case,
the attacker can observe 100. The difference in the number
of challenge ACKs effectively leaks the information about
whether a tested four-tuple corresponds to an active connec-
tion or not.

Sequence Number Inference: Assuming the attacker has
already identified a four-tuple that corresponds to an active
connection between the client and server, the off-path attacker
now needs to guess a valid sequence number that is considered
acceptable by the server. Figure 5 shows the sequence of pack-
ets that an attacker can send to distinguish between the cases of
(i) in-window and (ii) out-of-window sequence number. In the
first case where the spoofed RST packet has an in-window
sequence number (but not the next expected sequence number),
as per the countermeasure proposed to defend against blind
RST packet injection as described in §II-B, a challenge ACK
is triggered and this reduces the global challenge ACK count
from 100 to 99. In the second case where the sequence
number falls outside of the window, no challenge ACK will be
generated (the global challenge ACK count remains at 100).

Similar to connection inference, the attacker will now
send 100 non-spoofed in-window RST packets to exhaust
the challenge ACK count. Once again, based on how many
challenge ACKs are received, the attacker can tell if the
guessed sequence number in the spoofed RST, is in-window or
out-of-window.

ACK Number Inference: After an in-window sequence num-
ber of an active connection is identified, the attacker now
will need to guess a valid ACK number that is considered
acceptable by the server. Figure 6 shows the sequence of
packets that an attacker can send to differentiate the cases
of (i) ACKs in challenge ACK window and (ii) other ACK
numbers. In the first case where the spoofed ACK packet
has an ACK number in challenge ACK window (but with an
in-window sequence number), the server will reply with a chal-
lenge ACK, in accordance with the countermeasure proposed

3The effect is the same as sending a spoofed SYN. However, sending a
SYN-ACK is generally more stealthy.

Fig. 6. ACK number test.

to defend against blind data packet injection (as described
in §II-C). Following the same procedure as before, an attacker
can infer if the guessed ACK number falls in the challenge
ACK window. As will be described in §V-B, this helps the
attacker to eventually identify the SND.NXT on the server.

It is worth noting that once both the sequence number
and ACK number acceptable by the server are inferred, an
attacker can determine the sequence number and the ACK
number acceptable by the client as well. This is because
the RCV.NXT and SND.NXT on the server are basi-
cally equivalent to SND.NXT and RCV.NXT on the
client [21], [30]. In practice, if the victim connection has
ongoing traffic, the inferred sequence and ACK number may
shift as the attack is in progress. We discuss such cases in §VI.

An Alternative Approach for Sequence Number Inference:
In some cases a large number of RST packets observed in
a short period time may be considered abnormal. Firewalls
may even rate limit RST packets on a per-connection basis.
In order to alleviate this, one can in fact replace RST packets
with ACK packets, which are likely to stay under the radar.
As shown in Figure 3, a challenge ACK will be sent when
ACK number is in challenge ACK window while sequence
number is in-window. Since the challenge ACK window space
is at least 1/4 of the entire 4G of the ACK number space,
one can send 4 packets with ACK numbers 0, 1G, 2G,
and 3G respectively and at least one packet will trigger a
challenge ACK if the guessed sequence number is in-window.
To understand why the challenge ACK window is at least this
large, we first point out that the maximum receive window
size is 1G with the TCP window scaling option (RFC 7323),
which means that SND.MAX.WIN cannot be larger than 1G.
Therefore, according to definition of the challenge ACK
window described in §II-C, it is at least 1G as well. Given
this, every spoofed RST packet sent earlier for sequence
number inference is replaced by four ACK packets, which
is less efficient but still effective. We have implemented and
tested this alternative approach for sequence number inference.
However, to simplify the description, we assume the use the
original sequence number inference with RST packets in the
subsequent sections.

IV. OFF-PATH CONNECTION RESET ATTACK

In the previous section, we illustrate how the global
challenge ACK rate limit can theoretically leak information
about an ongoing connection to an off-path attacker. In this
section, we focus on how to construct a practical off-path
connection reset attack that succeeds when a spoofed RST
arrives with a matching sequence number of RCV.NXT . This
requires an attacker to successfully carry out both connection
(four-tuple) inference and sequence number inference. As will
be discussed, to construct a realistic attack, several practical

CAO et al.: OFF-PATH TCP EXPLOITS OF THE CHALLENGE ACK GLOBAL RATE LIMIT 769

challenges need to be overcome. We assume the threat model
to be the one in Figure 1 throughout the section, but the attack
works with the alternative threat model (Figure 2) as well.

Goals and Constraints: The main goal of the attack is to
quickly and reliably conduct the sequence number inference
and use it to reset an ongoing connection. The faster the attack
succeeds, the more potent the DoS effect will be. However,
the extent of the effect is subject to two practical constraining
factors: (i) The bandwidth may be limited between the attacker
and the victim (either server or client). (ii) Packet loss may
occur between the attacker and victim, especially when they
are far away. In this section, we focus only on designing fast
probing schemes with given bandwidth constraints and leave
the strategy to deal with packet loss to §VI.

A. Time Synchronization

Challenge: As mentioned in §III, the challenge ACK rate
limit is on a per second basis. In other words, the counter for
the number of challenge ACK packets that can be issued, gets
reset each second. Therefore, it is critical that in each cycle,
all the spoofed and non-spoofed packets sent from the attacker
arrive within the same 1-second interval, at the server.

One naive solution is that the attacker sends all those
packets in a very short period (say, 10 ms), to ensure that the
likelihood that they arrive within the same 1-second interval
is high. Unfortunately, in practice, this solution does not work
well since (i) many factors influence packet delays and thus,
the gaps between packet arrival times at the receiver, might
be much larger than the gaps in their transmission times,
(ii) such bursts of traffic are likely going to experience
congestion and packet loss. Thus, it is best for the attacker to
synchronize with the clock on the server, so that the attacker
can spread the traffic over the 1-second interval, without
worrying that some packet arrivals may cross the boundary
between two 1-second intervals.

The most common way to synchronize time between two
machines is using the Network Time Protocol (NTP). But in
practice, the attacker does not know if the server uses NTP,
or to what NTP server it connects to; thus, it is not a reliable
solution.

Solution: We propose a time synchronization strategy based
on the very side channel introduced by the challenge ACK
rate limit. The idea is to send more than 200 in-window RST
packets spread out evenly in one second and check if we
can see more than 100 challenge ACKs; if so, this indicates
that we have crossed the boundary between two one second
intervals (and have therefore not synced with the server yet).
We then adjust the timing for next round of probing (shift it
just enough) until we receive exactly the 100 challenge ACKs;
in this case, we have succeeded in synchronizing with the
server clock.

The reason we choose 200 packets is two-fold: 1) We are
able to trigger at most 200 challenge ACKs no matter how
many RST packets we send. These 200 challenge ACKs are
triggered only when half of the RST packets arrive before
the start of a new 1-second interval and half arrive after.
2) By evenly spreading the 200 packets over a 1-second
window, i.e., sending one packet every 5ms, allows us to adjust
the timing of the next round probing with the finest granularity.

Specifically, we show that the time synchronization can be
done in at most three rounds of probing in an ideal case
(without packet losses).

Round 1: As described before, the attacker sends
200 in-window RST packets to the server evenly spread out
over a 1-second window. The attacker then listens and counts
the number of received challenge ACK packets. This value is
stored as n1. Here, the attacker listens for incoming packets
for 2 seconds conservatively, before sending any additional
packets to make sure a 1-second interval on the server has
elapsed. Note that apart from the 200 RST packets, no other
packet is sent to the server in this interval. If n1 equals 100,
it means that all 200 RST packets all arrive in the same
1-second interval on the server, thereby indicating that we
have already synchronized with the server. Otherwise, it must
be true that n1 > 100, in which case the attacker proceeds to
the next round.

Round 2: The attacker waits for 5ms (shifting the start time
of the probes by 5ms) and repeats the same process as in the
first step. The number of received challenge ACK this time is
stored as n2. If n2 equals 100, the synchronization is done.
Otherwise, the attacker proceeds to round 3.

Round 3: By comparing n1 with n2, the attacker can
determine the final move to be synchronized. Specifically,
we provide the following reasoning to support the decision.
Assume that in step 1, x RST packets arrive in the first
1-second interval on the server, and y RST packets arrive
in the second 1-second interval; note that x + y = 200.
Similarly, in step 2, there are (x−1) and (y+1) RST packets
arrive in the first and second 1-second intervals respectively,
since in step 2 the attacker time shifts its probes by a period
of 1 sub-interval. Thus, n1 = min(x, 100)+min(y, 100) and
n2 = min(x − 1, 100) + min(y + 1, 100).

(i) If n2 ≥ n1: Let us assume that y ≥ 100 and x ≤ 100;
then n1 = min(x, 100) + min(y, 100) = x + 100, and n2 =
min(x − 1, 100) + min(y + 1, 100) = (x − 1) + 100 < n1,
which contradicts the assumption that n2 ≥ n1; thus y < 100
and x > 100. With these conditions, n2 = 100 + (y + 1) =
100 + (200 − x + 1), or (x − 1) = 300 − n2. In step 2,
(x−1) RST packets arrive in the first 1-second interval on the
server; thus, the attacker has to wait for (x− 1) sub-intervals,
i.e., (300 − n2). 1

200 seconds to synchronize her time interval
with the server.

(ii) If n2 < n1: With the same reasoning, the attacker
knows that x < 100 and y > 100. In this case, n2 =
(x − 1) + 100; thus, the attacker has to wait (n2 − 100) sub-
intervals, or n2−100

200 seconds to synchronize her time interval
with the server.

If no packet loss occurs (which is likely due to the small
number of packets sent every second), then the three rounds
are enough to complete the synchronization process. To handle
the rare event that packet loss may occur, we double check that
the synchronization was successful by sending another round
of 200 RST packets. If it is inconsistent with the previous
round, we start over. As will be discussed later, such cases
were almost never seen in our experiments.

B. Connection (Four-Tuple) Inference
After time synchronization, the attacker can successfully

launch subsequent attacks by knowing the boundaries between
the 1-second intervals. The first step is “four-tuple inference”,
wherein the attacker determines if a connection is established
between the client and the server. As mentioned in §II-A,
the receiver will send back a challenge ACK (regardless of
the sequence number of the packet) when a packet with a
SYN flag set, arrives.

770 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

In §III, we discussed how this behavior can be exploited
to determine whether or not a specific four-tuple is currently
active. Basically, for each four-tuple in question, the attacker
needs to send a spoofed SYN-ACK packet (a TCP packet in
which the SYN and ACK flags are set) with <srcIP = clientIP,
dstIP = serverIP, srcPort = X, dstPort = serverPort>. The above
assumes both the client and server IP addresses are known.
In addition, the server port is assumed to be publicly known
according to its service type. Therefore, the only unknown is
the source port the client uses. The maximum possible port
range is 216 = 65536, and the default range on Linux is only
from 32768 to 61000.

A naive approach is to test each port number at a time
per second, as depicted in Figure 4, which, in the worst
case, requires hours to complete. Therefore, a practical attack
requires the attacker to test several port numbers in a second.
Let us denote the maximum number of spoofed packets that
can be sent in one second by n (constrained by network
bandwidth). If n is large, one can search for the port number
using a binary-search-like algorithm, the pseudo-code of which
is shown in Algorithm 1. Specifically, assuming n is larger
than 32767, in the first round the attacker can test the port
range from 32768 to 65535 (the most likely half) in a 1-second
interval. If the actual port number falls in the range, then the
challenge ACK observed by the attacker at the end of the
interval will be 99 (one goes to the victim). If the actual port
number does not fall in this range, the observed number of
challenge ACKs will be 100. In either case, the attacker can
narrow down the search space by half and proceed to the next
round of search.

Algorithm 1 Binary Search for Source Port Number

1: left = left boundary of the port range
2: right = right boundary of the port range
3: while left < right do
4: mid = (left + right)/2
5: for i = mid to right do
6: Send a spoofed SYN packet with i as the client

port number
7: end for
8: Send 100 RST packets on the legitimate connection
9: Wait until the end of the 1-second interval, count the

number of received challenge ACK packets
10: if received ACK packets = 100 then
11: right = mid − 1
12: else
13: left = mid
14: end if
15: end while
16: return left; //the correct port value

An even better strategy is to divide the search space into
multiple bins and probe them together in the same round. That
way, one can eliminate n−1

n of the search space. A similar
multi-bin search strategy is used for sequence number infer-
ence in (§IV-C).

In cases where n is smaller than 32767 (due to bandwidth
constraints), the best the attacker can do is to simply try as
many port numbers as possible in each round. The binary
search or multi-bin search can be applied later when the search
space becomes small enough.

Fig. 7. Logic of handling an incoming packet with RST flag in latest Linux
kernels.

Fig. 8. Binary search for sequence number illustration. (a) First iteration.
(b) Second iteration.

C. Sequence Number Inference

As discussed in §II-B, the receiver generates a challenge
ACK in response to a RST packet that contains an in-window
sequence number which does not match exactly the expected
value. The related Linux kernel code is shown in Figure 7;
the tcp_sequence() function returns true if the sequence
number is in-window, and false if it is out-of-window. In the
latter case, the packet will simply be dropped. When the
sequence number is in-window and the packet has the RST
flag set, its sequence number is analyzed further. As we can
see, the connection is terminated only when the sequence
number matches RCV.NXT ; otherwise, a challenge ACK is
sent.

The main difference between port number inference and
sequence number inference is that the attacker does not need
to check every possible sequence number to trigger a challenge
ACK. Therefore, the attacker can divide the sequence number
space into blocks whose sizes are equal to the receive window
size, and probe with a guessed sequence number in each
block to determine which sequence numbers fall in the receive
window. Theoretically, an attacker can apply the same binary
search algorithm used in connection inference. This process is
illustrated in Figure 8. In the first round of probing, the attacker
can probe the right half of the sequence number space —
(2G, 4G). If any of the spoofed RST packets triggers a chal-
lenge ACK, the attacker will observe less than 100 challenge
ACKs at the end of the 1-second interval. If there are exactly
100 challenge ACKs observed, it indicates that the receive
window is on the left side of the search space. In either case,
in the second round, the attacker knows “which half the receive
window belongs to.” Let us say that the receive window is in
the right half. The attacker would then divide the search space
of (2G, 4G) into (2G, 3G) and (3G, 4G). Similar to the first
round, only (3G, 4G) needs to be probed in order to determine
the part that contains the receive window. This search will
eventually stop after 32 rounds exactly (because the sequence
number is 32-bit).

CAO et al.: OFF-PATH TCP EXPLOITS OF THE CHALLENGE ACK GLOBAL RATE LIMIT 771

However, in practice, the sequence number search space is
significantly larger than port number space. Let us consider
a receive window size of 12600. This leaves the attacker
340870 possible blocks to search through. If the attacker were
to transmit this many packets in one second, the bandwidth
requirement would be around 150Mbps, which is extremely
high. Likely, the attacker will have to perform a linear
search by attempting to search as many blocks as allowed
by bandwidth in one second.

Dealing With Unknown Window Sizes: Ideally, the block
size should be determined by the window size of the target
connection, i.e., the server’s receive window size. In reality,
however, an off-path attacker cannot observe the window size.
If the attacker chooses a smaller window size (compared to
the actual window size), the attack will send more packets
unnecessarily and take more time. On the other hand, if the
guessed value is larger than the actual value, the attacker might
miss the correct window of sequence numbers while travers-
ing consecutive blocks. Thus, there is an inherent trade-off
between the success rate and the cost incurred (in terms of
time and bandwidth) of the attack. Even if the attacker can
come up with a correct receive window size at one particular
time, the size can change over time.

Our solution is to use a conservative estimate of the window
size as the block size in the beginning and update it later given
proper feedback. The conservative window size is determined
by the initial window size advertised by the server in the
SYN-ACK packet. By surveying Alexa top 100 websites,
we find that the average initial receive window size is 26703.
This window size is the lower bound as the window typically
grows after the connection is established. To observe the initial
window size, the attacker simply attempts to establish a valid
(non-spoofed) TCP connection with the server. This strategy
works because a server typically uses the same initial receive
window size for all clients. Such a conservative estimate of
window size may force the attacker to send more packets, but
it at least will guarantee success. We will also discuss how to
update the window size dynamically during the search process.

Next, we elaborate the design of sequence number
inference:

• Step 1 – Identify the approximate sequence number
range. Let us assume that the attacker, in n blocks, can send n
spoofed packets per second (n is on the order of thousands in
our experiments). We call such n consecutive blocks a chunk.
The guessed sequence number is always chosen to be the first
sequence number within a block. If at the end of the 1-second
interval, the attacker observes 100 challenge ACKs, then the
attacker proceeds to the next chunk, i.e., the next n consecutive
blocks. If the attacker observes less than 100 challenge ACKs,
it indicates that the receive window is within the chunk that
was just probed. The attack can now proceed to step 2. Note
that if the number of observed challenge ACKs is less than 99,
it indicates that the initially estimated window size (block size)
is too small.

For example, as illustrated in Figure 10(a), if there are
two blocks whose beginning sequence numbers are inside the
actual receive window, then the number of observed challenge
ACKs will be 98; this indicates that the actual window size
should be approximately twice the estimated window size
(initial block size). We therefore update the block size to be
twice as much in the subsequent search steps. The two possible
outcomes are shown in Figure 10(b) and Figure 10(c).

• Step 2 – Narrow down the sequence number space
to a single block. From step 1, we know that the receive

Fig. 9. Multi-bin search for sequence number illustration. (a) Locating the
in-window block. (b) Locating the left boundary of the window.

Fig. 10. Window size estimate and adjustment. (a) Initial block size
(conservative estimate of window size). (b) Updated block size (one possible
outcome). (c) Updated block size (the other possible outcome).

window is within a chunk. We now further narrow down the
search space to an exact block within the chunk. Note that
we have now updated the block size so that there will be
one and only one block that can trigger challenge ACKs. To
locate the exact block, the same binary search strategy outlined
in Figure 8 can be used except that the search space now is
dramatically reduced after step 1.

The located block has a beginning value which, is an
in-window sequence number; therefore, one of the following
is true: (i) its beginning value is the correct sequence value;
or (ii) the correct sequence value is in its left neighboring
block. In the first case, since the sequence number matches the
RCV.NXT , the spoofed RST packet can already terminate
the connection. In the second case, the attacker performs an
additional search in the left neighboring block (see Step 3).

• Step 2 (optimized version) – Identify the correct
sequence block using multi-bin search. With the previous
assumption that the attacker can send n spoofed packets
per second, with a binary search, the first round requires only
n
2 packets (as we divide a chunk into two halves initially).
The second round requires only n

4 packets and so on. As we
see, the number of packets sent in each round reduces quickly.
This is not an efficient use of the network bandwidth. We show
that it is possible to speed up the search process by sending
more packets per round (still at most n per round).

The idea is, instead of dividing the search space into two
halves in each round, we can divide the space into multi-
ple bins and probe them simultaneously. This is illustrated
in Figure 9(a) where 4 bins are present in a chunk. Each bin
here holds an equal number of blocks. To determine which
bin the receive window falls in, the attacker sends a different
number of spoofed RST packets in each bin. In the example,

772 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

he sends 1 RST packet per block in the 2nd bin, 2 RST packets
per block in the 3rd bin, and 3 RST packets per block in the
4th bin. Since the receive window can fall into one and only
one of the bins, the attacker can determine which bin it is
in, by observing how many challenge ACKs are received at
the end of the 1-second interval. If there are 100 challenge
ACKs received, it indicates that the receive window is in the
1st bin (since no RST packets were sent in the 1st bin). Receipt
of 99 challenge ACKs indicates that the receive window is in
the 2nd bin, etc.

Note that the more bins we have, the faster we can narrow
down the sequence number space. However, the number of
bins chosen for each round is constrained by n. The larger
the n, the more the bins that can be created. The number of
bins is also capped at 14, given that the number of spoofed
packets may already exhaust the 100 challenge ACK counter
in one round (0 + 1 + 2 + . . . + 13 = 91).

• Step 3 – Find the correct sequence number using
binary search. Now we are sure that RCV.NXT is within a
specific block, we need to locate its exact value. To achieve the
goal, another modified binary search strategy is used here. The
observation is that the correct sequence number (RCV.NXT)
is the highest value in the block, such that any spoofed RST
packet with a sequence number less than it will not trigger
a challenge ACK packet. It is worth noting that we may not
realize which value is the correct sequence number until the
connection is terminated, as all the probing packets are RST
packets.

• Step 3 (optimized version) – Find the correct
sequence number using multi-bin search. Similar to the pre-
vious multi-bin search, the attacker can divide the single block
into many small bins and probe them simultaneously. All bins
before the left boundary of the receive window (RCV.NXT)
will not trigger any challenge ACKs; the ones after will. Thus,
in this step attacker only sends one spoofed packet per bin
and accumulates all the challenge ACKs received from right
to left (See Figure 9). If the attacker sees (100-X) challenge
ACKs at the end of the 1-second interval, it indicates that X
probed bins are after RCV.NXT . In Figure 9, let us say we
divide the block into 4 bins. After probing them, the number of
observed challenge ACK will be 97 because 2nd, 3rd, and 4th
bins turn out to be after RCV.NXT . Note that if the observed
challenge ACK is 100, it indicates that the correct sequence
number is somewhere inside the 4th bin (but not its beginning
value).

Similar to the previous multi-bin search, the number of
bins chosen for each round is constrained by n. In addition,
the number of bins is always capped at 100, as the
spoofed packets may exhaust the limit of 100 challenge
ACK count.

The RST off-path TCP attack is successfully launched after
the above three steps. The exact number of probing rounds
depends on the available bandwidth, and will determine the
time it takes to finish the attack. We will evaluate this in §VII.

V. OFF-PATH CONNECTION HIJACKING ATTACK

In this section, we discuss how an off-path attacker can
hijack an ongoing connection and inject spoofed data. The
methodology used to inject data into the client or to the server
are similar; thus, without loss of generality, we exemplify
the attack targeting the server. First, we describe the chal-
lenges that the attacker will need to overcome; subsequently,
the entire attack process is described in detail.

A. Challenges and Overview
The attacker will experience obstacles that are similar

to those associated with launching an off-path reset attack.
In addition, the following additional challenges need to be
addressed.

Preventing Unwanted Connection Reset: As described
in §IV-C, the RST packets with in-window sequence numbers
are leveraged towards identifying the next expected sequence
number on the connection. However, with that process, send-
ing a RST packet with the exact, expected sequence number
(RCV.NXT) to the server will terminate the TCP connection;
this is not the goal of the hijack attack. The challenge is thus,
to infer RCV.NXT without causing connection termination.

Identifying Both the Sequence Number and ACK Number:
In order to trick the server into believing that the injected
data is valid, and sent from the server, the attacker needs
to know both the correct sequence number (RCV.NXT)
and the acceptable ACK range on the server side of the
connection. The latter is typically a fairly small range as
discussed in §II-C.

At a high level, our design of the attack consists of
the following steps: First, the attacker finds an in-window
sequence number on the server using the techniques described
in §IV-C. Based on this, the attacker will be able to guess the
range of acceptable ACK values that trigger challenge ACKs.
The range of these acceptable values (ACK window) can be
used to identify the highest acceptable ACK number, i.e.,
SND.NXT , on the server. We will show next that obtaining
this ACK number then allows the attacker to infer the exact
expected sequence number on the server without resetting the
connection.

B. Inferring Acceptable ACK Numbers

Assuming an in-window sequence number is already
inferred, we now discuss how an attacker can infer the
next ACK number, SND.UNA, which is expected by the
server. As illustrated in Figure 3, an incoming data packet is
accepted if the ACK number is in the range of [SND.UNA−
MAX.SND.WND, SND.NXT]. If not, the receiver will
respond with a challenge ACK packet, if the ACK number
is in the range of [SND.UNA − (231 − 1), SND.UNA −
MAX.SND.WND); this range is called the challenge ACK
window. It is obvious that SND.UNA can be computed if
one can successfully infer the left boundary of the challenge
ACK window, SND.UNA − (231 − 1). This in turn can be
found using the following approach.

Step 1 (Identify the Challenge ACK Window Position):
According to RFC 1323, by using the window scaling option,
the maximum receive window size can be extended from 216

to a maximum of 230 = 1G. Thus, the MAX.SND.WND
cannot be larger than 1G. Accordingly, the challenge ACK
window size is between 1G and 2G, which is one quarter
of the entire ACK space size. Because of this, we divide
the entire ACK space into 4 bins and probe each bin to
check which bin(s) the challenge ACK window falls in. In our
implementation, we probe the first value of each bin, i.e. 0, 1G,
2G, 3G. We know for certain that either one or two bins can
trigger challenge ACK packets. Therefore, we need to send
different number of packets for each bin to differentiate the
resulting cases. A simple strategy is to send one packet at ACK
number 0, two packets at 1G, four packets at 2G, and 8 packets
at 3G. For instance, if the number of observed challenge ACKs

CAO et al.: OFF-PATH TCP EXPLOITS OF THE CHALLENGE ACK GLOBAL RATE LIMIT 773

is 94 (6 missing), then we can infer that both ACK number
1G and 2G have triggered challenge ACKs. If the number of
observed challenge ACKs is 96 (4 missing), then only ACK
number 2G has triggered challenge ACKs. We can then easily
determine the “left-most” bin whose beginning value falls in
challenge ACK window.

Step 2 (Find the Left Boundary of the Challenge ACK
Window): Now the problem is, given the bin located in the
previous step, we need to identify an ACK number in the left
neighboring bin, such that it is the “left-most” value (in the
circular sense) that can still trigger challenge ACKs. This is a
problem that can be solved in a similar way to the last step of
sequence number inference using multi-bin search (§IV-C).

Finally, when the left boundary of the challenge ACK
window (SND.UNA − (231 − 1)) is found, an acceptable
ACK value (SND.UNA) is trivially computed.

C. Identify the Exact Sequence Number

To locate RCV.NXT without resetting a connection,
we leverage the knowledge learned about the various ACK
number ranges. The idea is that, instead of sending spoofed
RST packets (which may terminate a connection), the attacker
can send spoofed data packets with ACK numbers that fall
in the challenge ACK window and thus, intentionally trigger
challenge ACKs (if the sequence number is in-window). Com-
bined with the fact no challenge ACK will be triggered if the
guessed sequence number is before RCV.NXT (considered
old packet and dropped), RCV.NXT can be located as the
“left-most” value that can trigger challenge ACKs. The search
process is in fact similar to the last step in sequence number
inference except that we now use spoofed data packets.

Now that the attacker knows both the RCV.NXT and
SND.UNA on the server, it is trivial to inject legitimate-
looking data packets that will be accepted by the server.
Further, it is also trivial to inject legitimate-looking data
packets to the client because the RCV.NXT on the server is
effectively the SND.UNA on the client, and the SND.UNA
is the RCV.NXT on the client (assuming no traffic is in
flight). In §VII-B, we will present a case study on how a web
service can be hijacked by a completely blind off-path attacker.

VI. OTHER PRACTICAL CONSIDERATIONS

We have fully implemented the attacks described in
§IV and §V. In §VII, we will evaluate the effectiveness and
efficiency of the attacks extensively. In this section, we outline
a few practical considerations that need to be handled.

Detecting and Handling Packet Loss: So far, we have
assumed that spoofed connections will not incur packet loss
and the challenge ACK side channel has no noise. However,
in reality, even if the number of packets sent per second
is chosen conservatively (well below bandwidth constraints),
there is still no guarantee that packet loss will not occur, and
a host may legitimately generate challenge ACKs that are not
triggered by the attack. They exhibit the same effect to the
attacker — the number of observed challenge ACKs will be
smaller than expected. In this paper, we call them both packet
loss for convenience. We address packet loss based on the
two following principles: 1) when in doubt, repeat the probes;
2) add redundancy in the probing scheme to proactively detect
packet loss.

In the initial step of the sequence number search, if packet
loss occurs, the number of observed challenge ACKs may

reduce to 99; the attacker thus, may incorrectly conclude that
a chunk that contains the receive window is located. This
will affect all subsequent search steps. Therefore, every time
when a “plausible” chunk is detected, we repeat the probe
on the same chunk. The search will proceed to step 2 only
when both rounds return exactly 99 challenge ACKs (no more,
no less).

In step 2 and step 3 of the sequence number search, we add
redundancy to actively detect packet loss so that we repeat only
the round of probing that experienced packet loss. The idea is
similar to using parity bits. In each round, instead of allowing
the number of observed challenge ACKs to be any value equal
to or below 100, we can construct the probing packets such
that only odd number of challenge ACKs will be considered
a valid outcome. If an even number of challenge ACKs is
received, packet loss must have happened. This strategy can
be visualized by referring to Figure 9(a). Instead of sending 1,
2, or 3 packets per block for each bin, we will send 1, 3, and
5 packets per block for each bin. This means that if the receive
window falls in 2nd bin, the number of challenge ACKs will
be 99; if the receive window is in 3rd bin, the number of
challenge ACKs will be 97, etc.

Both schemes are implemented and shown to be very
effective in cases where the network conditions between the
attacker and the victim are poor.

Moving Receive Window and Challenge ACK Window:
So far, we have assumed that the connection is relatively
idle, and the window does not change while the inference
is in progress. This is likely to be the case in many real
world scenarios, especially with long-lived connections. One
example is the push notification connections on mobile plat-
forms [2]. They are idle most of the time until a new push
notification arrives. Even when a connection is not idle at one
point, it is likely to become idle at some point and become
more susceptible to the attack. Moreover, the traffic activity
will mostly be concentrated on either uplink and downlink,
rarely both. Typically, downlink traffic dominates; therefore,
the attacker targeting at resetting the connection on the server
side will experience less difficulty (client’s sequence number
increases very slowly). Tor network connections are also
candidates as the end-to-end throughput is typically very low.

To support sequence number inference against (slow)
moving receive windows, we implement a simple strategy
which conducts a brute-force style sequence number guessing.
Specifically, once a “left-most” in-window sequence number
is inferred (which may become invalid in the next interval due
to the ongoing activities), we send 20,000 RST packets with
sequence numbers, with offset 1, 2, . . . , 20, 000 to the valid
sequence number. As will be shown in §VII-A.2, for low-
activity connections, this strategy works well. We leave the
exercise to come up with a strategy to target connections with
heavier traffic to future work.

Per-Connection Rate Limit: Since the Linux kernel version
4.0 (released in Apr 2015), in addition to the global challenge
ACK rate limit, a per-connection rate limit was introduced.
The idea is to reduce the impact of potential ACK loops [5]
that may occur if client and server are de-synchronized. The-
oretically, the per-connection rate limit provides an isolation
between the victim connection and the attacker connection,
and the side channel should be eliminated completely. For
instance, even if the challenge ACK count limit is reached
for the victim connection, it does not affect the limit on the
attacker connection at all.

774 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

However, interestingly, the per-connection rate limit only
applies to SYN packets or packets without any payload. The
comment in the Linux kernel states “Data packets without
SYNs are not likely part of an ACK loop”, hinting that such
packets do not need to be governed by the per-connection
rate limit. It is evident that the developers assumed a benign
scenario instead of an adversarial one. To get around this
restriction, we simply send spoofed packets with a single byte
of payload. For the spoofed SYN-ACK packets though, it is
impossible to bypass the per-connection rate limit. Unfortu-
nately, upon a closer look at the implementation, when a
per-connection challenge ACK is sent out, it is also counted
towards the global challenge ACK limit. Therefore, it is still
possible to infer that the four-tuple of an ongoing connection
has been guessed correctly by observing only 99 challenge
ACKs at the end of the 1-second interval. In practice, the per-
connection rate limit is 1 packet every 0.5 second, which does
allow the attacker to proceed with the binary search approach
outlined in §IV-B. We have verified experimentally that it does
work against the latest Linux kernels with per-connection rate
limit.

Configurable Maximum Challenge ACK Count: For sim-
plicity, throughout the paper, we assume the challenge ACK
count to be 100, which is the default value. Our test on a
variety of Linux operating systems also confirmed the result.
However, as proposed in RFC 5961, this value is configurable
by a system administrator. According to the specification, the
flexibility is provided to allow the tradeoff between resource
(bandwidth and CPU) utilization and how fast the system
cleans up stale connections. Fortunately, the exact configured
value can be inferred quite easily with some simple steps
(as long as it is not excessively large). After establishing
a legitimate connection to the server, the attacker can send
many RST packets, e.g., 1000 packets which is much larger
than default value of 100, with in-window sequence values to
trigger as many challenge ACKs as possible. The packets are
sent in a very short period of time (say, 200 ms4) to increase
the likelihood that they end up in the same 1-second interval.
The attacker then counts the total number of challenge ACKs
returned. Finally, the attacker can wait for a short amount of
time and repeat the process one more time to verify the number
of received challenge ACK packets is the same; that value
would be the actual limit set by the server. Note that this is
only a one-time effort for each target.

VII. EVALUATIONS

To showcase the effectiveness of our attacks, we next
evaluate them in terms of metrics such as success rate and
the time to succeed.

A. Connection Reset Case Studies
There are two sets of experiments reported in this section

viz., where (i) we reset an SSH connection and (ii) perform a
Tor connection reset.

Experimental Setup: For the SSH experiments, we use a
Ubuntu 14.04 host on the University of California - Riverside
campus as the victim client. The victim SSH server is one
of the instances we create on Amazon EC2 in different
geographic locations, worldwide. The attack machine is a
Ubuntu 14.04 host in our lab. For the Tor experiments,

4Sending 1000 packets within a 200ms window will rarely cause conges-
tion or packet loss.

TABLE I

SSH CONNECTION RESET RESULTS

we target the connection between a Tor relay (set up in our
campus) and a random peer relay. Our Tor relay is also a
Ubuntu 14.04 host and has been running the service for several
months. The attack machine is the same host as the one in the
SSH experiments.

In both the SSH and Tor experiments, the attacker attempts
to reset the connection on the server end by connecting to it
and performing the inference attacks. The diversity of servers
and the corresponding network paths help test the robustness
of the attack. We assume that the 3-tuple <client IP, server
IP, and server port> is known. Further, the attack machine is
capable of spoofing the IP address of both the victim client
and server.

1) SSH Connection Reset:
Summary: We run the reset attack against 8 different Ama-

zon EC2 servers in different geographical locations. They
are all micro instances set up for our experiments only.
We establish a connection from the victim client to each server,
and have the attacker perform the off-path connection reset
attack. For each server, we repeat the experiment 10 times
and report the average. As shown in Table I, the attack is
highly effective: the average success rate is 97% over all runs,
with an average time cost of 44.3s. Note that the overall time
excludes the time for synchronization (recall §IV-A) as it is
a one-time effort for a server and can be done a priori. The
bandwidth cost here is 5000 spoofed packets per second, which
translates to 4Mbps. Note that the probing scheme has already
built in packet loss detection using “parity bits” as described
in §VI. To show that the packet loss detection scheme works,
we report the number of rounds and the percentage of rounds
on average, when packet loss is detected. For instance, even
when packet loss between the attack node and “Asia 2” server
is frequent, we still manage to succeed 9 times out of 10.

Failures may still occur since the detection scheme is
rudimentary and may fail to detect packet loss. In some cases,
the failure can also be the result of the attacker and server
becoming out-of-sync due to network delay variance.5 The
success rate can be further improved by adding more redun-
dancy and using better error detection schemes. However,
we argue that the current success rate is already good enough
to carry out effective DoS attacks.

Time Breakdown: To understand where the time is spent in
our attacks, we conduct another benchmark experiment against
one of the SSH servers with both sequence number and ACK
number inference. As shown in Figure 11, we break down

5The failures that we experience are predominantly if not always because
of packet loss. However, since we do not have access to routers, middle-
boxes, or even the end-server, we are unable to determine where and why the
packet losses happen (recall that we only control the victim and attack client
devices).

CAO et al.: OFF-PATH TCP EXPLOITS OF THE CHALLENGE ACK GLOBAL RATE LIMIT 775

Fig. 11. Time breakdown.

Fig. 12. Attack intensity impact on time to succeed.

the time spent into time synchronization and the three search
phases of port number inference, sequence number inference,
and ACK number inference with error bars. We also compare
the optimized multi-bin search versus the regular binary search
in each phase. Time synchronization takes around 7 seconds
(optimization is not applicable). As discussed, it is only a one-
time effort and therefore not on the “critical path”. We see
that with the optimized multi-bin search, the time spent on
port search is fairly short (around 14 seconds). The time spent
on sequence number search takes the most time due to the
fact that the sequence number space is much larger. The time
spent on ACK number inference is also fairly short (around
8 seconds) due to the fact that the challenge ACK window is
extremely large and easy to locate.

Compared to the results with binary search, we see that the
optimized multi-bin search has greatly improved the search
speed by more than 30 seconds overall. This is due to the fact
that binary search significantly under-utilizes the bandwidth
resources and significantly increases the number of rounds of
probes. The reason why the sequence number search does not
benefit as much is because most of the time is spent on the
initial linear search of the huge sequence number space. This
step cannot be optimized with the multi-bin search.

Attack Intensity vs. Time to Succeed: Using the same exper-
imental setup as before, we vary the attack intensity, i.e., the
number of packets sent per second and show how this affects
the time it takes to succeed. As shown in Figure 12, we plot the
average, min, and max time to successfully conduct sequence
number inference only (reset attack), as well as with the ACK
number inference added (hijacking attack). Clearly, the higher
the attack intensity the faster the attack. When the intensity
is only ≈512 Kbps (1000 packets per second), the time to
succeed is over 100 seconds, on average. When the intensity
is ≈4 Mbps, (5000 packets per second), the average time
reduces to ≈50 seconds for hijacking and only 30 seconds for
reset. Note that an intensity >4 Mbps does not substantially
improve the time to succeed because we begin to observe
more packet losses, which cause additional rounds of probing.

TABLE II

TOR CONNECTION RESET RESULTS (FIRST HALF UNDER BROWSING
TRAFFIC AND SECOND HALF UNDER FILE DOWNLOADING TRAFFIC)

Of course, this is experienced on the specific network environ-
ment between the attack host and the server, which could differ
elsewhere; if the network conditions are even better, the time
to succeed can be further improved.

2) Tor Connection Reset: To conduct a realistic experiment,
we use a Tor relay set up in our campus and have a user using
it as an entry relay. The entry relay establishes connections
with an arbitrary middle relay (anywhere in the world). For
ethical reasons, we do not perform attacks against arbitrary
relay nodes that are not connected to our node.

To understand how the attack performs against mostly idle
connections, we test it against connections between our own
Tor relay and 40 other Tor relays throughout the world. The
attack node has to connect to these Tor relays that are far
away to perform attacks. In each case, we repeat the reset
experiment 10 times. First, we discover that 16 of them do
not appear vulnerable to the side channel attacks, even though
they appear to be Linux hosts. We suspect that this is because
of certain firewalls that drop our spoofed packets. For the
remaining 24 hosts, the average success rate is 88.8% and
the average time to succeed is 51.1s. We find these results to
be slightly worse than those in the SSH experiments because
of higher packet loss rates.

In addition, we pick 5 random relays and simulate back-
ground traffic with browsing and file downloading, and con-
duct the same experiment as above. Here, to deal with moving
windows, we use the simple brute-force strategy described
in § VI. The results are shown in Table II. The average success
rate is now down to 77% and the average time to succeed
is 60.9s. Upon further inspection, the increased failure rate is
exactly due to the moving window problem i.e., it interferes
with the sequence number search. Nevertheless, we think the
result is acceptable as we have not designed a robust solution
specifically for dealing with a moving window (this is left for
future work).

In general, we believe that a DoS attack against Tor con-
nections can have a devastating impact on both the availability
of the service as a whole and the privacy guarantees that it
can provide. The default policy in Tor is that if a connection
is down between two relay nodes, say a middle relay and an
exit relay, the middle relay will pick a different exit relay to
establish the next connection. If an attacker can dictate which
connections are down (via reset attacks), then the attacker can
potentially force the use of certain exit relays.

B. TCP Hijacking Case Study

Our attack does not require any assistance from client-
side or server-side malware or puppet (which are required in

776 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 13. USAToday screenshot with phishing registration window.

prior studies [17], [27]). Therefore, our target is any long-lived
TCP connection that does not use SSL/TLS. There are several
attractive targets: video, advertisements, news, and Internet
chat rooms (e.g., IRC). Depending on the implementation,
one can envision the following possibilities: 1) the client
periodically initiates a request and asks for responses, or 2) the
server proactively pushes notification messages. In both cases,
our attack can inject malicious messages to the client and
induce a variety of classic attacks such as phishing or cross-
site scripting.

Here, we pick a news website www.usatoday.com which
has a long-lived TCP connection that periodically retrieves
news updates every 30 seconds. This gives ample idle time
for our sequence number and ACK number inference. The
attacker machine and the victim client are Ubuntu 14.04 hosts
in our lab (as in the other case studies). Once the numbers
are inferred, we perform a de-synchronization attack [6] by
sending a spoofed request to the server that will force it to
send a response to the client. Since the request was never sent
by the client, it will not accept the response as the response
packet contains an invalid ACK number (acknowledging data
that have not been sent). Later, when the client itself initiates a
real request, the server would no longer accept it as the packet
is considered to be data with an old sequence number. Now
that the client and server become de-synchronized, the attacker
no longer needs to worry about a race condition where the
response to the victim client is sent back by the server first.
During all this, the attacker simply sends spoofed responses
periodically every few seconds with ACK numbers properly
acknowledging the client’s requests. If such spoofed responses
arrive before the client sends a request, they will simply be
dropped without any adverse effect (because the ACK numbers
are acknowledging data that has not been transmitted yet).

We implement the attack end to end, and successfully hijack
the connection and inject a phishing registration window to
solicit email and passwords at the top of the webpage as
shown in Figure 13. We repeat the experiment 10 times and
summarize our results in Table III. The attack first infers
sequence and ACK numbers before injecting the malicious
payload. Success rate 2 quantifies the rate of inferring the
sequence and ACK numbers correctly. However, USAToday
occasionally switches the HTTP request from one type to
another and therefore the injected payload will not match
the request. Success rate 1 quantifies the rate of injecting
the response that matches the request, which is strictly lower
than success rate 2, but is still reasonable in our experiments.
In addition, the time to succeed is longer than in the case

TABLE III

USATODAY INJECTION RESULTS

of SSH and Tor experiments mostly because of the extra
steps of ACK number inference and data injection. Based
on prior research efforts (e.g., [25] and [29]), a significant
number of TCP connections are likely to last for durations
more than 100ms; this period is sufficient for carrying out
both the reset and hijack attacks.

VIII. DISCUSSION AND DEFENSES

Determining When the HTTP Request Packet Was Sent by
the Client: As shown in § VII-B, an off-path attacker has no
information about when HTTP request packets are sent by
the client. Therefore it simply sends one spoofed malicious
HTTP response packet to the client periodically. However,
repeated attempts at sending such packets can cause suspicion
and make it easy for the victim client to detect such packets.
Furthermore, the content itself will expose the purpose of
attack, and can be used as evidence. Instead, if the attacker is
able to determine when the client sends the HTTP request,
it could simply inject a single packet with the malicious
content immediately afterwards.

Towards achieving this goal, the attacker can simply send a
packet with an invalid ACK number (acknowledging data that
have not been sent) to the client to probe whether a request
has been sent; this will cause the challenge ACK window
to slide forward, iff an HTTP request was sent. Specifically,
if the packet has an ACK number towards the originally
perceived left boundary of the client’s challenge ACK window
(i.e., SND.UNA − 2G + 1), it is expected to trigger a
challenge ACK; otherwise, the HTTP request must have been
sent which shifted the left boundary of the challenge ACK
window on the client. This result could be confirmed with
the same side channel after each probe, as described in §V-B.
Using this approach, the attacker can repeat the probing every
few seconds; and subsequently inject the malicious packet only
once.

Vulnerabilities in Other OSes: We examine if the stud-
ied vulnerability exist in the latest Windows and FreeBSD
OSes (the latter TCP stack is also used by Mac OS X).
In brief, these OSes are not vulnerable to the attack. First
of all, neither Windows nor FreeBSD has implemented all
three conditions that trigger challenge ACKs according to
RFC 5961. More importantly, the ACK throttling is not found
for Windows or MAC OS X. Ironically, not implementing the
RFC fully, in fact is safer in this case.

Defenses: As highlighted earlier, the root cause of all the
attacks described is the side channel associated with the global
challenge ACK count. This side channel can leak various types
of information about an ongoing TCP connection. In general,
as asserted in previous studies [24], network protocols are not
designed rigorously to guarantee the non-interference property.
Specifically, if there are multiple independent connections, one
must ensure that the actions performed on one must not affect
those of the other connection. One common case where this

CAO et al.: OFF-PATH TCP EXPLOITS OF THE CHALLENGE ACK GLOBAL RATE LIMIT 777

occurs is when the protocol uses global variables that are
shared across connections (e.g., the challenge ACK count).
We believe that a formal verification of both network protocols
and implementations can shed light on if and when the non-
interference property is violated.

In our study, we discover that the design and implementation
of RFC 5961 has actually introduced an information flow that
leaks TCP connection state through the shared challenge ACK
counter (thus violating the non-interference property), and is
highly exploitable. The best defense strategy is to eliminate
the side channel (the global challenge ACK count) altogether.
One can still enable the per-connection rate limit as long as
each connection has a completely separate counter that does
not interfere with those of other connections. The downside
of this strategy is that if the number of connections in a
system increases, the aggregate challenge ACK count can
go up without any bound. There is currently no evidence to
suggest that this worst case scenario is likely to ever happen.
However, if one is really concerned about wasting resources
on sending challenge ACKs, we suggest a second solution
which is adding noise to the channel. This is a common
defense strategy in mitigating side channel attacks [13], [32].
Specifically, instead of having a fixed global challenge ACK
count of 100 in all intervals, we can add random values (either
positive or negative) for each interval. This will essentially
confuse the attacker during the search process. In fact, even
if the attacker repeats the probe many times, the result will
always differ over time. To ensure that the added randomness
is theoretically sound, one can even apply differential privacy
to systematically introduce noise, as was done recently in [33].
We leave the design of the exact scheme to add randomness
to future work.

Patch Process: On July 5th2016, we proposed our
defense to the Linux community. We point out that our
side channel vulnerabilities are subtle; even during the
patch process, the side channel vulnerabilities went through
several iterations. The first two unofficial patch attempts
were discussed in the private Linux security mailing list
(security@kernel.org) within a day. They essentially
try to set a random global challenge ACK count limit that
varies between 68 to 131, every second. Interestingly, it turns
out that this makes the attack considerably harder; yet the
attack is still possible to execute (with substantially increased
time). We demonstrate two possible attacks below. The main
idea is based on the fact that the remaining ranges of challenge
ACK counts, with good and bad guesses, are different. If all
probing packets are bad guesses, then the possible range of
challenge ACK received by the attacker is [68, 131]. Other-
wise, the number range would change to [67, 130] (assuming
only one probing packet is a good guess). Therefore, as soon
as the attacker receives 67 or fewer challenge ACKs from that
second, there must have been a good guess. Similarly, if the
attacker receives 131 challenge ACKs, all probing packets are
bad guesses. All other numbers between [68 and 130] will be
ambiguous and the probing has to be repeated. Alternatively,
the attacker can optimize the attack with more redundant
packets. Specifically, for every probed sequence number, if the
attacker sends 64 such packets repeatedly, in one second, the
attacker will observe the remaining challenge ACK count to
be [4, 67] if it was a correct guess. This range has no overlap
with the range [68, 131] if it was a wrong guess. This attack
is estimated to take around 30 mins with using our previous
transmission rate (5000 packets per second).

Given our modified attack, another unofficial patch was
proposed on July 8th 2016. The main idea behind this
patch is to randomize the time window (that governs when
the challenge ACK count is reset) from 1s to [0.5s, 1.5s).
This creates a time synchronization issue at the attacker’s
end. Besides, this patch also increases the default value
of tcp_challenge_ack_limit to 1000. Unfortunately,
after modification, our side-channel attack is still able to
work. Instead of spreading the packets over the 1s dura-
tion, the attacker can send fewer packets in a short period
(e.g., 0.2s, or even shorter). It is likely that this short period
will fall in a single window. Specifically, if one of the probing
packets is a good guess, then the remaining challenge ACK
count has to be smaller than 1000. Otherwise, it will be
exactly 1000. In the unlikely events where the packets do fall
in two consecutive windows, we will be able to observe that
the remaining challenge ACK count exceeds 1000.

Considering all modified attacks, the first public Linux
kernel patch [4] was published on July 10th 2016 (and later
accepted to Linux); the patch essentially sets a ran-
dom challenge ACK count limit, which varies between
500 to 1500, every second. By using a larger possible range,
this patch makes the attack practically hard to execute.
On July 14th 2016, a second public Linux kernel patch [3] was
released. We are happy to see that this new patch eliminates
the global challenge ACK count and enables “per-connection
rate limit” instead, which is exactly what we initially proposed.

IX. RELATED WORK

Previous work on off-path TCP sequence number inference
heavily relies on executing malicious code on the client
side [1], [17], [19], [20], [26], [27], either in the form of
malware [26], [27] or malicious javascript [17], [19], [20].
They share the same scheme of “guess-then-check” based on
some side channels observable by the malicious code on the
client side. They include OS packet counters [12], [26], [27],
global IPID [1], [17], and HTTP responses [19]. In contrast,
our off-path TCP attack eliminates the requirement completely,
which makes the attack much more dangerous. The only prior
study that shares the same threat model is the one reported
by lkm in phrack magazine in 2007 [1]. The authors exploit
the well-known global IPID side channel on Windows hosts to
perform such attacks. Unfortunately, the IPID side channel is
extremely noisy and the attack can take close to 20 minutes to
succeed, as reported by the authors. Furthermore, as reported
in [17], the success rate of such an attack is very low, unless
the attacker has a low latency to the victim (e.g., on the
same LAN). In comparison, our newly reported attack finishes
much faster and is significantly more reliable.

Besides the TCP sequence number, it has been shown that
other types of information can be inferred by an off-path
or blind attacker [7], [14], [15], [18], [24], [34]. For instance,
Ensafi et al. [15] show that, by leveraging the SYN cache and
RST rate limit on FreeBSD, one can infer if a port is open
on a target host through bouncing scans off of a “zombie”
FreeBSD host. Knockel and Crandall [24] demonstrate the
use of a new per-destination IPID side channel that can leak
the number of packets sent between two arbitrary hosts on
several major operating systems with a bootstrapping time of
an hour on average. Alexander and Crandall [7] can infer the
RTT between two arbitrary hosts with reasonable accuracy
within minutes. Gilad and Herzberg [18] are also able to infer
if two hosts have established a TCP connection identified by

778 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

a specific four-tuple, by utilizing the same noisy global IPID
side channel. Compared to the newly discovered side channel,
it has the following limitations: 1) requires the presence of
stateful firewall or NAT which may not be universally present;
2) has a low success rate even when the tests are repeated
multiple times (e.g., for more than a minute). Utilizing the
new side channel, we can do this much faster.

Many of the side channels can be abused and cause
unwanted information leakage. However, in some cases, they
can also be used legitimately for network measurements. For
instance, the global IPID side channel has been used to infer a
network’s port blocking policy [28]. The same side channel has
also been used to count how many hosts are behind a NAT [8].
In addition, even though commonly considered a vulnerability,
ISPs that allow IP spoofing are still prevalent according to the
latest reports in 2009 [9] and 2013 [10]. Further, very recently,
IP spoofing has also been used in legitimate applications
such as reverse traceroute [23], detecting Interdomain Path
changes [22], and detecting routing policy violations [16].

X. CONCLUSION

To conclude, we have discovered a subtle yet critical flaw
in the design and implementation of TCP. The flaw manifests
as a side channel that affects all Linux kernel versions 3.6 and
beyond and may possibly be replicated in other operating
systems if left unnoticed. We show that the flaw allows
a variety of powerful blind off-path TCP attacks. Finally,
we propose changes to the design and implementation of
TCP’s global rate limit to prevent or mitigate the side channel.

ACKNOWLEDGEMENT

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any
copyright notation here on.

REFERENCES

[1] Blind TCP/IP Hijacking is Still Alive. Accessed: Aug. 8, 2017. [Online].
Available: http://phrack.org/issues/64/13.html

[2] Cloud Messaging. Accessed: Aug. 8, 2017. [Online]. Available:
https://developers.google.com/cloud-messaging/

[3] [PATCH Net] TCP: Enable Per-Socket Rate Limiting of all ‘Challenge
Acks’. Accessed: Aug. 8, 2017. [Online]. Available: https://www.mail-
archive.com/netdev@vger.kernel.org/msg119411.html

[4] [PATCH Net] TCP: Make Challenge Acks Less Predictable.
Accessed: Aug. 8, 2017. [Online]. Available: https://www.mail-
archive.com/netdev@vger.kernel.org/msg118677.html

[5] [TCPM] Mitigating TCP ACK Loop (‘ACK Storm’) DoS attacks.
Accessed: Aug. 8, 2017. [Online]. Available: https://www.ietf.org/mail-
archive/web/tcpm/current/msg09450.html

[6] R. Abramov and A. Herzberg, “TCP Ack storm DoS attacks,” J. Comput.
Secur., vol. 33, pp. 12–27, Mar. 2013.

[7] G. Alexander and J. R. Crandall, “Off-path round trip time mea-
surement via TCP/IP side channels,” in Proc. INFOCOM, Apr. 2015,
pp. 1589–1597.

[8] S. M. Bellovin, “A technique for counting NATted hosts,” in Proc. 2nd
ACM SIGCOMM Workshop Internet Meas., 2002, pp. 267–272.

[9] R. Beverly, A. Berger, Y. Hyun, and K. Claffy, “Understanding the
efficacy of deployed Internet source address validation filtering,” in Proc.
ACM SIGCOMM IMC, 2009, pp. 356–369.

[10] R. Beverly, R. Koga, and K. C. Claffy, Initial Longitudinal Analy-
sis of IP Source Spoofing Capability on the Internet. Monterey,
CA, USA: Calhoun, 2013. [Online]. Available: https://calhoun.nps.edu/
handle/10945/36775

[11] Y. Cao et al., “Off-path TCP exploits: Global rate limit considered
dangerous,” in Proc. USENIX Secur., 2016, pp. 209–255.

[12] Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao, “Static detection
of packet injection vulnerabilities: A case for identifying attacker-
controlled implicit information leaks,” in Proc. CCS, 2015, pp. 388–400.

[13] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in
Web applications: A reality today, a challenge tomorrow,” in Proc. IEEE
Symp. Secur. Privacy, May 2010, pp. 191–206.

[14] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall, “Detecting
intentional packet drops on the Internet via TCP/IP side channels,” in
Proc. PAM, 2014, pp. 109–118.

[15] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, “Idle port scanning
and non-interference analysis of network protocol stacks using model
checking,” in Proc. USENIX Secur., 2010, pp. 257–272.

[16] T. Flach, E. Katz-Bassett, and R. Govindan, “Quantifying violations
of destination-based forwarding on the Internet,” in Proc. IMC, 2012,
pp. 265–272.

[17] Y. Gilad and A. Herzberg, “Off-Path Attacking the Web,” in Proc.
USENIX WOOT, 2012, pp. 41–52.

[18] Y. Gilad and A. Herzberg, “Spying in the dark: TCP and Tor traffic
analysis,” in Proc. PETS, 2012, pp. 100–119.

[19] Y. Gilad and A. Herzberg, “When tolerance causes weakness: The case
of injection-friendly browsers,” in Proc. WWW, 2013, pp. 435–446.

[20] Y. Gilad, A. Herzberg, and H. Shulman, “Off-path hacking: The illusion
of challenge-response authentication,” IEEE Secur. Privacy, vol. 12,
no. 5, pp. 68–77, Sep. 2014.

[21] B. Han and J. Billington, “Termination properties of TCP’s connection
management procedures,” in Proc. ICATPN, 2005, pp. 228–249.

[22] U. Javed, I. C. D. Cunha, E. Katz-Bassett, T. Anderson, and
A. Krishnamurthy, “PoiRoot: Investigating the root cause of interdomain
path changes,” in Proc. SIGCOMM, 2013, pp. 183–194.

[23] E. Katz-Bassett et al., “Reverse traceroute,” in Proc. NSDI, 2010,
pp. 219–234.

[24] J. Knockel and J. R. Crandall, “Counting packets sent between arbitrary
Internet hosts,” in Proc. FOCI, 2014, pp. 1–8.

[25] F. Qian et al., “TCP revisited: A fresh look at TCP in the wild,” in Proc.
ACM SIGCOMM IMC, 2009, pp. 76–89.

[26] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack—How firewall middleboxes reduce security,” in Proc. IEEE Symp.
Secur. Privacy, May 2012, pp. 347–361.

[27] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative TCP sequence number
inference attack: How to crack sequence number under a second,” in
Proc. CCS, 2012, pp. 593–604.

[28] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu, “Investigation of triangular
spamming: A stealthy and efficient spamming technique,” in Proc. IEEE
Secur. Privacy, May 2010, pp. 207–222.

[29] L. Quan and J. Heidemann, “On the characteristics and reasons of long-
lived Internet flows,” in Proc. ACM SIGCOMM IMC, 2010, pp. 444–450.

[30] R. Braden, Ed., Requirements for Internet Hosts—Communication Lay-
ers, document RFC 1122, 1989.

[31] A. Ramaiah, R. Stewart, and M. Dalal, Improving TCP’s Robustness to
Blind In-Window Attacks, document RFC 5961, 2010.

[32] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. USENIX Secur., 2001, pp. 1–17.

[33] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating storage side
channels using statistical privacy mechanisms,” in Proc. CCS, 2015,
pp. 1582–1594.

[34] X. Zhang, J. Knockel, and J. R. Crandall, “Original SYN: Finding
machines hidden behind firewalls,” in Proc. INFOCOM, Apr. 2015,
pp. 720–728.

Yue Cao, photograph and biography not available at the time of publication.

Zhiyun Qian, photograph and biography not available at the time of
publication.

Zhongjie Wang, photograph and biography not available at the time of
publication.

Tuan Dao, photograph and biography not available at the time of publication.

Srikanth V. Krishnamurthy, photograph and biography not available at the
time of publication.

Lisa M. Marvel, photograph and biography not available at the time of
publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

