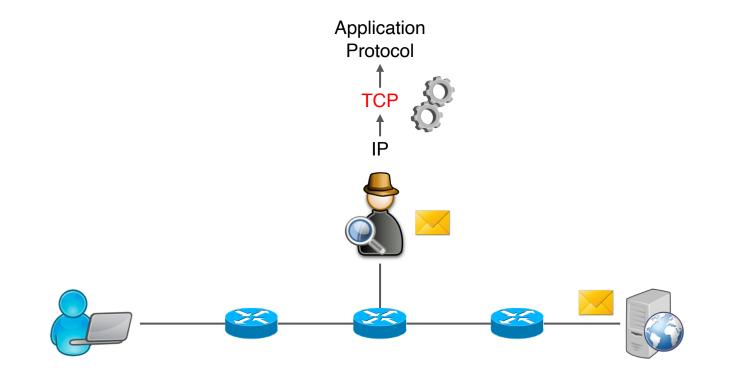

# SymTCP: Eluding Stateful Deep Packet Inspection with Automated Discrepancy Discovery

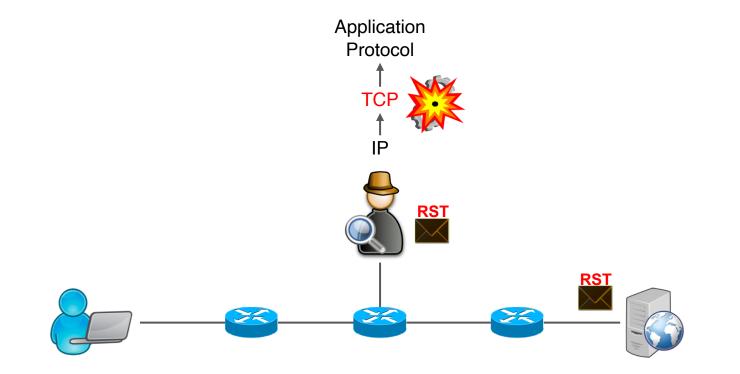
**Zhongjie Wang**, Shitong Zhu, Yue Cao, Zhiyun Qian, Chengyu Song, Srikanth Krishnamurthy, Kevin Chan, and Tracy Braun



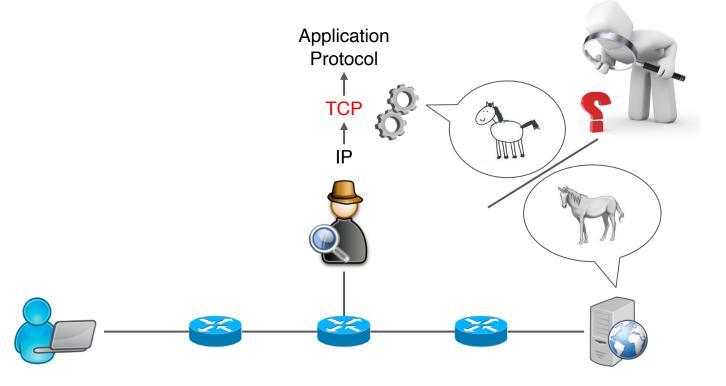
#### What is DPI (Deep Packet Inspection)?




Censorship and Surveillance


**ISP** Traffic Differentiation

Modeling Users for Online Ads


#### How does DPI work?

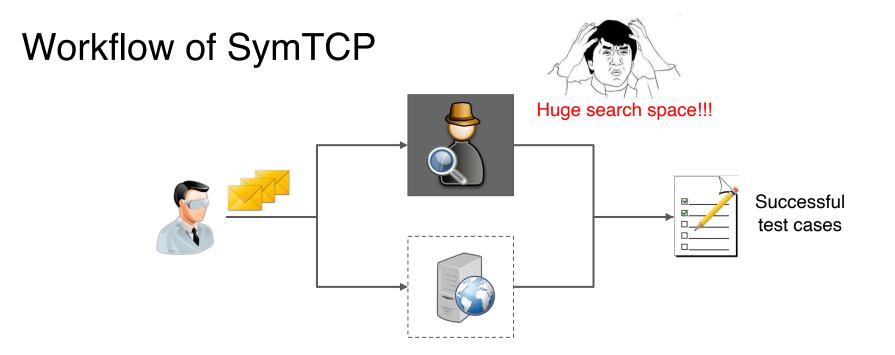


#### How does DPI work?

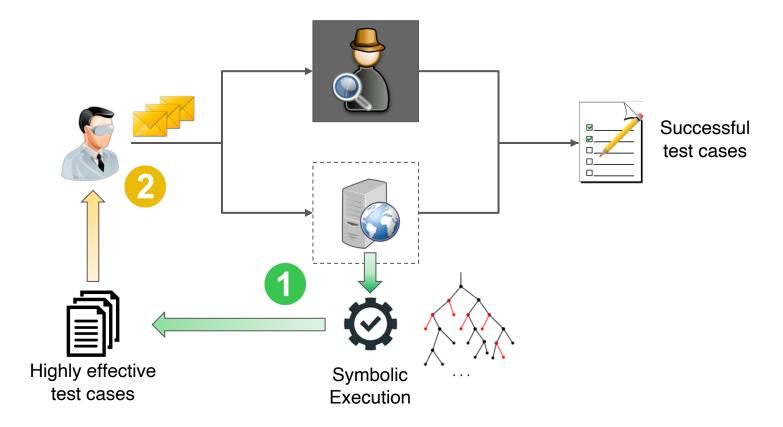


#### How does DPI work?

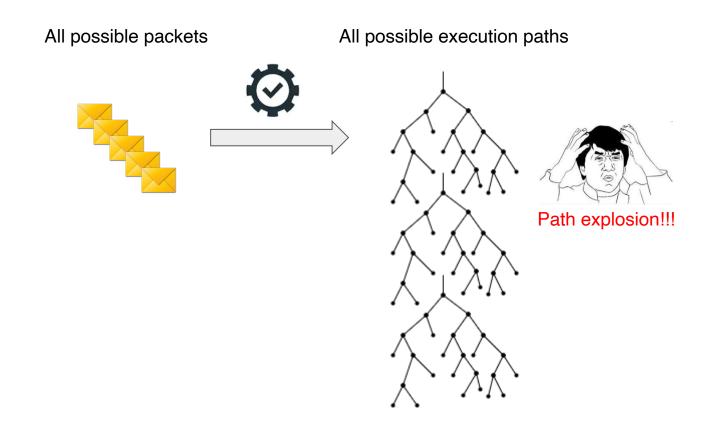



### Implementation-level discrepancy

```
// Linux TCP timestamp validation
if ((signed int)(last_tsval - current_tsval) <= 1) {
    // succeed
} else {
    // fail last_tsval - 1 <= current_tsval <= last_tsval + 2<sup>31</sup>
}
```



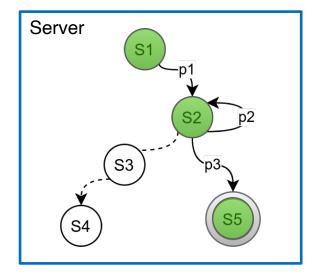

```
// Snort TCP timestamp validation
if ((signed int)((current_tsval - last_tsval) + 1) < 0) {
    // fail
} else {
    // succeed
}
</pre>
```

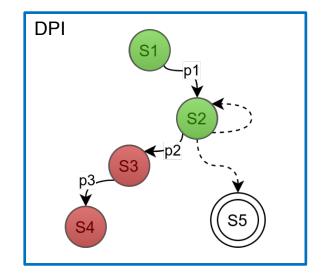




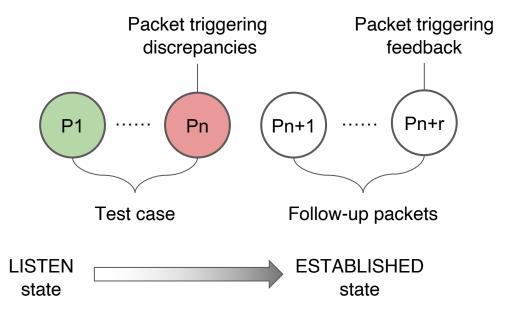

# Workflow of SymTCP




## Problem with symbolic execution




# Pruning decisions


Labeling In the program, we label where a packet gets dropped or accepted "drop" / "accept" (i.e. TCP state changed). We try to cover these accept/drop points. points Bounding We allow each TCP option to occur only once, and at most 5 **TCP** options different TCP options in a packet. Pruning We terminate an execution path once it reaches any uninteresting uninteresting TCP state (e.g., TIME\_WAIT, CLOSED) TCP states

### **Differential testing DPI**





### Complete packet sequence



# Symbolic execution performance

- Linux kernel v4.9.3
- 72 core Intel Xeon CPU and 256GB memory
- 1/2/3 symbolic packets
- 20/40/60 byte length packet

|      |                  | epaene      |          |             |               |               |
|------|------------------|-------------|----------|-------------|---------------|---------------|
| # of | 20-byte TCP pkts |             | 40-byte  | e TCP pkts  |               |               |
| pkts | Time             | Covered     | Time     | Covered     | 56,787 te     | st cases      |
|      | to cover         | drop points | to cover | drop points | Sampled 10,00 | 00 test cases |
| 1    | 5s               | 8           | 5s       | 9           |               |               |
| 2    | 20s              | 16          | 20m      | 19          | 18m           | 18            |
| 3    | 50s              | 31          | 1h2m     | 39          | 40m           | 38            |

No TCP options

Time cost could vary due to randomness in path selection of symbolic execution.



#### • 6082 successful test cases, 9 strategies, 2 novel strategies

#### TABLE IV.SUCCESSFUL STRATEGIES ON ZEEK V2.6

| Strategy           | TCP state | Insertion/Evasion packet                                            | Linux                  | Zeek                           |
|--------------------|-----------|---------------------------------------------------------------------|------------------------|--------------------------------|
| † SYN with data    | L/SR/E    | (I) SYN packet with data                                            | Ignore data            | Accept data                    |
| † Multiple SYN     | SR/E      | (I) SYN packet with out-of-window SEQ num                           | Discard and send ACK   | Reset TCB                      |
| † Pure FIN         | E         | (I) Pure FIN packet without ACK flag                                | Discard (may send ACK) | Flush and reset receive buffer |
| † Bad RST/FIN      | SR/E      | (I) RST or FIN packet with out-of-window SEQ num                    | Discard (may send ACK) | Flush and reset receive buffer |
| † Data overlapping | SR/E      | (I) Out-of-order data packet, then overlapping in-order data packet | Accept in-order data   | Accept first data              |
| † Data without ACK | SR/E      | (I) Data packet without ACK flag                                    | Discard                | Accept                         |
| † Data bad ACK     | E         | (I) Data packet with ACK > snd_nxt or < snd_una - window_size       | Discard                | Accept                         |
| * Big gap          | SR/E      | (I) Data packet with SEQ > $rcv_nxt + max_gap_size$ (16384)         | Accept                 | Ignore later data              |
| * SEQ $<$ ISN      | SR/E      | (E) Data packet with SEQ num < client ISN and in-window data        | Accept in-window data  | Ignore                         |
|                    |           |                                                                     |                        |                                |

\* TCP State: L - Listen, SR - SYN\_RECV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. † - Old strategy, \* - New strategy.

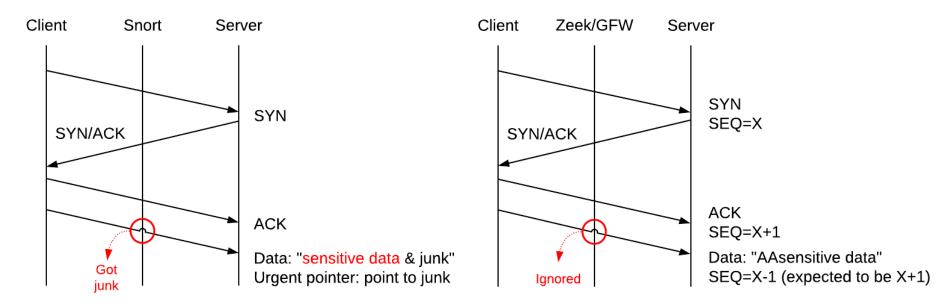


#### • 652 successful test cases, 11 strategies, 3 novel

#### TABLE V.SUCCESSFUL STRATEGIES ON SNORT V2.9.13

| Strategy                | TCP state | Insertion/Evasion packet                                             | Linux                        | Snort                 |  |
|-------------------------|-----------|----------------------------------------------------------------------|------------------------------|-----------------------|--|
| † Multiple SYN          | Е         | (I) SYN packet with in-window SEQ num                                | Discard and send ACK         | Teardown TCB          |  |
| † In-window FIN         | E         | (I) FIN packet with SEQ num in window but $\neq$ rcv_nxt             | Ignore FIN (may accept data) | Cut off later data    |  |
| † FIN/ACK bad ACK       | E         | (I) FIN/ACK packet with ACK num > snd_nxt or < snd_una - window_size | Discard (may send ACK)       | Cut off later data    |  |
| † FIN/ACK MD5           | SR/E      | (I) FIN/ACK packet with TCP MD5 option                               | Discard                      | Cut off later data    |  |
| † In-window RST         | E         | (I) RST packet with SEQ num $\neq$ rcv_nxt but still in window       | Discard and send ACK         | Teardown TCB          |  |
| † RST bad timestamp     | SR        | (I) RST packet with bad timestamp                                    | Discard                      | Teardown TCB          |  |
| † RST MD5               | SR/E      | (I) RST packet with TCP MD5 option                                   | Discard                      | Teardown TCB          |  |
| † RST/ACK bad ACK num   | SR        | (I) RST/ACK packet with ACK num $\neq$ server ISN + 1                | Discard                      | Teardown TCB          |  |
| * Partial in-window RST | Е         | (I) RST packet with SEQ num $< rcv_nxt$ but partial data in window   | Discard                      | Teardown TCB          |  |
| * Urgent data           | SR/E      | (E) Data packet with URG flag and urgent pointer set                 | Consume 1 byte urgent data   | Ignore all data       |  |
|                         |           |                                                                      |                              | before urgent pointer |  |
| * Time gap              | SR/E      | (E) Data packet timestamp = last timestamp + 0x7ffffff/0x80000000    | Accept                       | Ignore                |  |
|                         |           |                                                                      |                              |                       |  |

\* TCP State: L - Listen, SR - SYN\_RECV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. † - Old strategy, \* - New strategy.


# Great Firewall of China (GFW)

• 4587 successful test cases, 12 strategies, 9 novel

| Strategy                 | TCP state | Insertion/Evasion packet                                                         | Linux                 | GFW            |
|--------------------------|-----------|----------------------------------------------------------------------------------|-----------------------|----------------|
| † Bad RST                | SR/E      | (I) RST packet with bad checksum or TCP MD5 option                               | Discard               | Teardown TCB   |
| † Bad data               | SR/E      | (I) Data packet with bad checksum or TCP MD5 option or bad timestamp             | Discard               | Accept         |
| † Data without ACK       | SR/E      | (I) Data packet without ACK flag                                                 | Discard               | Accept         |
| $* SEQ \leq ISN$         | SR/E      | (E) Data packet with SEQ num $\leq$ client ISN and in-window data                | Accept in-window data | Ignore         |
| * Small segments         | SR        | (E) Data packet with payload size $\leq 8$ bytes                                 | Accept                | Ignore         |
| * FIN with data          | SR/E      | (I) FIN packet with data and without ACK flag                                    | Discard               | Teardown TCB   |
| * Bad FIN/ACK data       | E         | (I) FIN/ACK packet with data and bad checksum or TCP MD5 option or bad timestamp | Discard               | Teardown TCB   |
| * FIN/ACK data bad ACK   | E         | (I) FIN/ACK packet with data and ACK num > snd_nxt or < snd_una - window_size    | Discard               | Teardown TCB   |
| * Out-of-window SYN data | SR        | (I) SYN packet with SEQ num out of window and data                               | Discard and send ACK  | Desynchronized |
| * Retransmitted SYN data | SR        | (I) SYN packet with SEQ num = client ISN and data                                | Discard               | Desynchronized |
| * RST bad timestamp      | SR        | (I) RST packet with bad timestamp                                                | Discard               | Teardown TCB   |
| * RST/ACK bad ACK num    | SR        | (I) RST/ACK packet with SEQ num $\neq$ server ISN + 1                            | Discard               | Teardown TCB   |
|                          |           |                                                                                  |                       |                |

\* TCP State: L - Listen, SR - SYN\_RECV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. † - Old strategy, \* - New strategy.

### Case study



#### 1. Urgent Pointer (Snort)

2. Underflow SEQ (Zeek & GFW)

# Key contributions

- A novel approach that **combines whitebox and blackbox testing** 
  - Whitebox: Extract a reference model from server with symbolic execution
  - Blackbox: Infer internal states of DPI with follow-up packets
- First to run symbolic execution on **full-fledged TCP implementation** and send **multiple symbolic packets**
- Highly efficient and effective automated tool to unearth discrepancies between different TCP implementations
  - Facilitate DPI elusion
  - Help developers fix implementation bugs

# Conclusion

- A novel approach combines whitebox and blackbox testing to automatically discover TCP implementation-level discrepancies
- Evaluated against 3 well-known DPI systems, Zeek (Bro), Snort, and the GFW, and found 14 novel strategies
- A significant step in testing and eluding DPI systems



Email: zwang048@ucr.edu Homepage: https://zhongjie.me



**GitHub Repo**