
A CA-based Scheme of User Authentication over
Content-Centric Networking

Kai Lei*, Zhongjie Wang
The Shenzhen Key Lab for Cloud Computing Technology and Applications (SPCCTA),

Shenzhen Graduate School, Peking University, University Town, Shenzhen 518055, P. R. China
*leik@pkusz.edu.cn, zj.wang@pku.edu.cn

Abstract—Content-Centric Networking (CCN) is a predominant
substitute of the current TCP/IP networking and it is proposed to
be the next generation Internet foundation. The evident
characteristic of this network architecture is caching and
indexing contents by the inner nodes – the routers, so as to reduce
the redundant transmission and thereby shorten the distance
between user and content. In this paper, we propose and
implement a user authentication scheme over CCN. We adopt the
trust model based on certificate authority (CA) to provide the
service of binding certificate with user’s identity, and help user
determine the authenticity and reliability of the publisher of the
network content. Also the specialized CA we designed for CCN
takes advantage of the decentralization characteristic and cache
mechanism of CCN to distribute the certificates and certificate
revocation list (CRL) into the network, and it reduces the load of
the CA central server when retrieving and verifying certificates.
Besides, we propose a timeline-based method to segment the CRL
with certificate issue date, thereby making the retrieval of CRL
more effective.

Keywords-Certificate Authority, user authentication, Content-
Centric Networking

I. INTRODUCTION
The scale of data on the Internet is becoming increasingly

large with the continuous growth of the Internet users and the
rapid development of the mobile Internet in recent years. And
the data transmission pattern is gradually shifting from one-to-
one to one-to-many. A white paper published by Cisco VNI in
2011 showed that the global IP traffic is growing at a
compound annual growth rate of 32 percent from 2010 to 2015,
and will increase fourfold in 5 years. The broadcast contents
(most are videos) will account for about 90 percent of global
consumer traffic by 2015. However, the existing TCP/IP
network has some inherent deficiencies in dealing with
broadcast contents transmission. Although there’re some
remedial methods like CDN and P2P, all of them only can
reduce the traffic out from the servers, but can’t solve the issue
of data redundant transmission in the network fundamentally.

In order to solve this problem, Van Jacobson et al. from
PARC proposed the concept of Content-Centric Networking
(CCN) [1]. In this new network environment, the user requires
content by expressing a broadcast interest message containing
the name of the content into the network, and the routers will
forward this interest message to the nodes may have that
content. The nearest node along the dissemination path will

respond with the demanded content, and any other responds
from other nodes will be discarded. A marked difference
between CCN routers and traditional routers is the CCN router
contains a Content Store (CS) which caches all the contents
passing by. By doing this, users can fetch the cached contents
from the routers instead of retrieving them from the content
sources, so the distance between user and content is minimized.

According to the features of CCN, the sources of the
contents become quite uncertain. Contents can be retrieved
from either trusted sources or untrusted sources. Thus we need
a mechanism to guarantee the content security. The security
problems were taken into consideration at the early stage of
CCN. Each content block has a digital signature generated by
its publisher signing over the combination of the name and the
content [2]. The signature bits and publisher’s information is
stored in the header of the content object. Users can get the
publisher’s public key or certificate from the network to verify
the signature, but there’s not yet an effective approach to verify
the certificate itself.

In modern information security, public key infrastructure
(PKI) is the most widely used certificate management
architecture. Certificate Authority (CA), as the most important
part of PKI, is responsible for the generation, management,
storage, distribution, verification and revocation of certificates.
Besides the CA model, there’re some other models to
authenticate user identity, like Web of Trust [3] or SPKI/SDSI
[4, 5].

The CA model has the highest security level among them. It
has been extensively used for authentication in the areas of E-
commerce, business emails, enterprise internal networks, etc.
Comparatively speaking, due to lack of a unique certificate
management authority, the Web of Trust model allows
misjudgments on user authentication and may rectify itself with
time, so it has a relatively low security level and is not suitable
for the business applications. In the CA model, the rights of
trust are kept by the authority, so the administrator can manage
all the certificates universally. In the Web of Trust model, users
have the rights to determine whether to trust a counterpart or
not. The CA model is considered to be centralized while the
Web of Trust model is considered to be quasi-decentralized.
However, there’re still some problems exist in the CA model.
For example, users need to trust untrusted CAs in server-
defined certificate chain, which implies accepting transitive
trust.

978-1-4673-0242-5/12/$31.00 ©2012 IEEE

The 7th International Conference on
Computer Science & Education (ICCSE 2012)
July 14-17, 2012. Melbourne, Australia

 1053

MoC2.2

In this paper, we will introduce our solution of user
authentication over CCN. We have adopted the CA model in
PKI, and leveraged the decentralized characteristics of CCN to
optimize the service in certificate storage, usage and revocation.
Our user authentication scheme has single level CA running in
standalone mode, so we can focus on the primary functions of
CA over CCN. To test our design and implementation in
practical environment, we have implemented a simple network
file sharing system in CCN environment.

In Section 2 of this paper, we shall briefly introduce some
background knowledge about related data structures in CCN
and the signing and issuing process of certificates of CA. Then
we shall elaborate the design of certificate authority over CCN
in Section 3. The implementation of our system and a further
discussion of applying the service in practical circumstances
will be brought up in Section 4. Finally we shall make a
conclusion in Section 5.

II. BACKGROUND

A. Data Format and Signature in CCN
In CCN, there’re two types of messages in the network: the

Interest message and the ContentObject message. When a user
wants to require his desired content, he first needs to broadcast
an Interest message into the network. The Interest message
mainly contains the name of the content, the publisher
information, exclusion information, selector, source type, etc.
Some of the key fields of Interest message are listed here:

• Name: A globally unique CCN name consists of
several components, usually including a version
number (timestamp). Segmentation numbers are also
included for large contents. An example of CCN name
is
“/ccnx.org/publications/papers/ccn.pdf%FD%04%EB
%15%C5%10%00”.

• PublisherPublicKeyDigest: The digest of content
publisher’s public key.

• AnswerOriginKind: This field indicates whether the
content should be newly generated or existing one.

• InterestLifeTime: The expiration time of the Interest
message. The routers will automatically drop the
message after this period.

Corresponding to the Interest message, the returned content
is wrapped in the ContentObject message. The ContentObject
message mainly contains four elements—Signature, Name,
SignedInfo and Content. The digest algorithm and signature
bits are in the Signature element. And the publisher’s public
key or certificate is in the SignedInfo element, otherwise
there’s a key locator indicating where to find the key or
certificate. The Content element represents the encoded binary
data of the content. Some of the key fields in Signature element
are listed here:

• DigestAlgorithm: The digest algorithm used in the
signing process.

• Witness: A field used to store extra information for the
aggregated signing on multiple blocks.

• SignatureBits: The signature binary data, which is
generated by signing over the conjunction of the Name,
SignedInfo and Content elements.

Some of the key fields in SignedInfo element are:

• PublisherPublicKeyDigest: The digest of the
publisher’s public key, used to verify the content
source.

• Timestamp: The timestamp when the content is
published.

• Type: Type of the content, including DATA, ENCR,
GONE, KEY/, LINK, NACK.

• FreshnessSeconds: Used to judge if the content is
stale or not.

• KeyLocator: May be the actual key or certificate of
the publisher, or a link to the key or certificate.

The content is signed when the first time it’s being
published into the network. Currently CCN supports two kinds
of signing: individual block signing and aggregated signing [6].

For individual block signing, the publisher generates a
standard digital signature using PKCS#1. A digest will be
calculated on the concatenation of Name, SignedInfo, and
Content portion of the encoded ContentObjects, and then the
publisher signs the digest with his own private key.

For aggregated signing, CCN uses the Merkle hash trees.
First it arranges the set of content blocks as the leaf nodes in a
n-ary tree, and calculate the digest of each leaf node as it does
for individual block signing. Then it calculates the digest of
parent nodes by concatenating the digests of all its child nodes
and compute with the digest algorithm again. This process is
iterated up the tree, and finally we can get the digest of the root
node. The publisher signs this digest with his own private key
and put the result into the signature bits field. The path
information of Merkle hash tree is stored in the Witness field.

B. Certificate Authority
In PKI architectures, the main functionality of a CA is

binding the entities in physical world with digital certificates in
the network. We adopt the ITU-T X.509 v3 certificate standard
which is most widely used. The subject and issuer of a
certificate are identified by distinguished names (DN). A DN is
unique within the range of CA, but the same DN may refer to
different entities in different CAs. So it’s necessary to specify
both the DN and CA to uniquely identify an entity. Because
DN is only used as a unique identifier, it can be named by CA
with its own naming convention. In our system, we use user’s
identifier (UID) as the user’s DN.

Usually the registration process of a certificate needs a
cautious approval before a detailed investigation on applicant’s
information. The policies in different CAs are separately made
by their administrators, so there isn’t a unified standard or
specification. Therefore we would not discuss on the detail
about the certificate registration procedure. Seeing that our

Identify applicable sponsor/s here. (sponsors)

 1054

MoC2.2

service is applied in a networking file sharing system, we
choose a simple certificate registration policy, which allows the
users to create their own certificates freely and the CA has the
right to revoke the certificates when necessary.

In addition, we have a user information service in our
system which records users’ identifiers and the detail
information binding to the UIDs. The information is provided
by user during the registration procedure, and needs to be
verified with some interactive process, e.g. email or SMS.

III. DESIGN AND IMPLEMENTATION
The certificate authority we designed mainly provides the

functionalities of certificate registration, signing and issuing,
storage, revocation, validation and secret key management. It
consists of three main parts as showed in Fig. 1: (1) Certificate
Management Service (CMS), (2) Certificate Repository (CR),
and (3) Key Management Service (KMS).

The CMS has some human-computer interactive interfaces
to the users and administrators. The CR is used to store all the
digital certificates and certificate revocation lists (CRLs)
signed and issued by CA. For the sake of protecting the private
key of CA, we put it on a separate server in the intranet and
only can be accessed by the Certificate Management Service.
The KMS doesn’t provide any service other than using or
maintaining the CA’s private key.

A. Certificate Registration
When a new user has entered the system, he needs to apply

for a user certificate binding to his identifier by sending a
registration request to the CMS. The user should always
provide his UID and personal information to the server and the
server will examine the information with the policies
predefined by the administrator. If the server accepts the
information, it will send a verification code to the user’s private
address, e.g., email address or cell phone. The user needs to
send back the code to prove the authenticity of his identity. The
detailed procedure is described as follows:

(1) The user applying for a certificate first sends an
Interest message to the CMS.

(2) When the server receives the request, it returns an
Interest message to acquire the user’s information and
public key.

(3) The user generates the public key pair locally, and then
sends its public key along with his personal
information wrapped in an encrypted ContentObject
message to the server. The encryption is 128 bits AES,
and the secret key is randomly generated by the user
and encrypted with CA’s public key.

(4) When the server receives the ContentObject message,
it uses its private key to get the AES key and then the
user’s public key and personal information. If the
server approves the user’s request, it will send the
verification code to the user by email. Afterward the
server will send an Interest message to the user to
inquire the verification code.

(5) The user encrypts the verification code with AES key
and sends it back to the server.

(6) The server checks the correctness of the verification
code returned by the user. If it’s correct, the server will
sign and issue a certificate for the user; otherwise it
will return an error message.

The user’s public key pair is generated on user’s local
machine instead of on the server so as to protect the key from
man-in-the-middle attacks. All communications between user
and server are encrypted with AES, so the information can’t be
sniffed by a third party. The user who initiates the session
needs to generate the AES key and create the secure channel.
An important premise of this method is that the user needs to
hold the correct public key of CA locally. The public key can
be fetched along with the client side software, and the user
should check it while installation.

 Because CCN doesn’t support sending Interest messages
with application specified parameters, the server needs to send
back an Interest message to the user, and then the user can
reply with his personal information in a ContentObject
message. In CCN, the Interest messages are broadcast into the
network, so it’s necessary to set the PublisherPublicKeyDigest
field to specify a certain destination for the message. After
sending an Interest message, the user may register a filter
locally to handle the returned ContentObject message from the
network.

B. Certificate Generation and Signing
When the CMS has validated a user’s identity, it generates

a certificate for that user and signs the certificate by sending it
to the KMS. For the signing of certificates comes down to the
usage of CA’s private key, it’s strongly suggested to be
performed on a device or server which is highly secure and
only takes charge of the usage and maintenance of CA’s
private key.

First, the CMS fills some necessary fields when generating
a new certificate, including serial number, validity, issuer,
subject, etc. The serial number is a positive integer which is

Figure 1. Certificate Authority in CCN environment

 1055

MoC2.2

unique in the range of CA. We choose to let the serial number
be incremental starting from 1. Also the validity must be
specified to indicate when the certificate will be expired and
needs to be reissued. Usually the identity of the certificate
owner needs to be rechecked when reissuing the certificate. In
our system, there isn’t a complex censorship during certificate
registration, so the validation period can be relatively longer.
We use the CA’s name as the issuer’s distinguished name and
UID as the subject’s distinguished name.

After filling the prerequisite fields, the server encodes the
certificate into binary bytes with ANS.1 DER, and then
computes the hash digest with the algorithm specified in the
Signature Algorithm field. To sign the certificate, the server
sends the hash digest to the KMS, and the latter will sign the
digest with CA’s private key. Finally the result will be filled
into the Signature field. All the certificates issued by CA are
stored on both server side and user side for other to download.

C. Certificate Storage
Like other content objects, the CCN certificates can be

cached in the network. After certificates being published into
the network, anyone can obtain them from the CA or some
others who have downloaded them. This is not similar to the
traditional CA, under which the certificates could only be
acquired from the servers. This decentralized way of storing
certificates has mitigated the server load, and the certificates
still can be achieved even the servers are unavailable.

All of the certificates issued by CA are stored in the
repository we called CR. The name of a CCN certificates is
hierarchical, which includes the DN (i.e. UID) of the certificate
owner and the version number. We put the certificates under
the namespace of the current application or under a specified
global namespace. For example, ccnx/apps/ccn-
maze/certs/<UID>/<Version>, or
/ccnx/CA/<region>/certs/<UID>/<Version>.

D. Certificate Revocation
Certificate revocation means during the validation period,

the administrators manually invalidate the certificate when the
owner of the certificate no longer has the right to use it. The
certificate revocation is implemented through certificate
revocation list (CRL). For a revoked certificate, its serial
number, time and reason of revocation are all detailed in the
CRL. The CRL is signed with CA’s private key so its data
integrity is assured. Because the size of the CRL increases over
time, so the CRL is usually split into delta CRLs. In our system,
we segment the entire CRL by the issuing date of certificate.
Thus the users can check the revocation status of a certificate
by downloading a small piece of CRL chunk file. Each CRL
chunk file contains the revocation records of certificates issued
in a certain period, e.g. a day or a month. Users can easily
retrieve the CRL chunk files by the issuing dates of certificates.
For example, the name of the CRL chunk file containing
certificates issued on Sep 30, 2011 is /ccnx/apps/ccn-
maze/CRL/20110930/<Version>.

In the same way, the CRL chunk files could be aggregated
to extend its range to a month or a year. The CRL chunk files
are stored in the CR together with the certificates. According to

the feature of CCN, the CRL can be fetched from the CA or
from other users who have downloaded them.

E. Certificate Verification
Before being used, certificates need to be verified for its

validity. The aspects of verification include: (1) Authenticity,
which is to check if the certificate is issued by an existing valid
CA; (2) Identity, which is to check if the publisher of the
content is the same as the owner of the certificate; (3) Validity,
which is to check whether the certificate is expired or not and if
it is revoked, i.e., specified in the CRL.

We assume that the users have preserved CA’s certificate
locally, so the public key in the CA’s certificate could be used
to verify the integrity of other users’ certificates. Also, we
compare the PublisherPublicKeyDigest in ContentObject and
the hash digest computed by the public key in the user’s
certificate to examine the identity. Some additional information
about the certificate owner is available from the User Server of
the system. A combination of the validation period in the
certificate and the CRL is used to check the validity of the
certificate.

A user may request the CRL file through the network after
knowing the issuing date of the certificate. The CRL file may
not be the latest one, because it could be gotten from other
users. CCN has defined the FreshnessSeconds in the
ContentObject to indicate if the content is stale or not, and this
value for CRL file should be rather short due to timeliness.
Another way to ensure we get the latest CRL file is sending the
Interest message directly to the CA. The CA will respond with
a LINK type ContentObject pointing to another CCN name
which contains a version number, and then the user will send
another Interest message to get that CRL file. For example, the
user sends an initial request with the CCN name
/ccnx/apps/ccn-maze/CRL/20110930/latest, and the server will
return a link pointing to /ccnx/apps/ccn-
maze/CRL/20110930/<Version>. The user then could get the
CRL file with the latter CCN name.

All of the CRL files downloaded are stored in user’s local
repository, so it’s possible to be reused and shared with other
users.

F. CA’s Key Management and Update
The security of CA’s private key is the foundation of the

CA technology. Once the CA’s private key is compromised,
the attacker can pretend to be any other legal user, even the CA
itself. Even worse he can replace the existing CA’s certificate
with his own certificate, and it will be a disaster for the entire
CA. So the CA’s private key must be well protected. Usually
it’s stored in a specialized device which is physically isolated.
To realize this, we put the CA’s private key on a specialized
sever in the intranet which only provides the functionalities of
key creation, update and usage. In our design, the certificate
issuing process doesn’t need a physical operation by any
administrators, so all services can be accessed through the
network. For some other application, the human interaction can
be involved.

 1056

MoC2.2

There exist two situations for CA’s private key update: key
leakage and key expiration. In the first situation, the
administrators need to regenerate the CA’s public key pair and
certificate at once, and sign all the previous issued contents
(certificates and CRLs) again with the new private key. To
update a self-signed certificate (CA’s certificate), three kinds of
certificates should be published: the OldWithNew certificate,
the NewWithOld certificate, and the NewWithNew certificate
[7]. The OldWithNew certificate contains the old public key
signed with the new private key and is used to authenticate the
old certificate with the new one. The NewWithOld certificate
contains the new public key signed with the old private key and
is used to authenticate the new certificate with the old one. The
NewWithNew certificate is the new self-signed certificate used
to replace the old one and it contains the new public key signed
with the new private key. The CA will broadcast an Interest
message to notify all the users for its certificate update. For
those who are not online, they will receive a certificate update
message next time when they are online.

In the other situation, the CA updates its key due to
expiration. The contents previously issued by CA don’t need to
be signed again, and only the CA’s key and certification need
to be regenerated. The contents signed by the old key are still
valid until they are expired.

G. Implementation
At the current stage, we have implemented the three basic

parts of CA service over CCN and a client-side library based
on the Java API provided by the CCNx project. All of our
source code is written in Java. Our test environment includes 1
certificate server running the CMS and the CR, 1 key server
running the KMS, and 10 clients. The OS of servers and clients
is Ubuntu 10.04 and ccnx 0.4.2 is installed on all the machines.
Except the KMS, each machine is running a ccnd process and a
ccn_repo process.

IV. DISCUSSION

A. Importance of CA
As we have described before, user authentication is an

uncharted territory to be explored in CCN. Any application
relies on secure communication or data integrity examination
needs to be built on an infrastructure which can provide user
authentication. Usually, it’s thought common users have no
discrimination against the legitimacy of contents in the network.
A user decides whether to trust a content object only by the
identity of the human related to that object. In the traditional
Internet, we care about where we get the content, e.g. whether
they’re from a credible domain secured with SSL. In CCN, the
provenance of the content is what we don’t care about, but we
do care about the publisher of the content. An ideal solution is
to have a global unique authority which specially provides the
user authentication service. It records all users’ information in
detail which is used to build the trust profiles, and it also acts as
a guarantor for user’s behavior. Binding the certificates with
identities makes it possible to trace to the person in the physical
world by a digital certificate. So people have to take the
responsibility for their actions on the Internet.

B. CA vs. Web of Trust vs. SDSI
Just like the TCP/IP architecture, the trust mechanism

hasn’t been built into the infrastructure of the CCN architecture.
But obviously it’s especially important for CCN. Currently
there isn’t a trust mechanism like the PKI/CA mechanism can
be widely used in the CCN network. The signature mechanism
in CCN determines that many trust models, including CA, Web
of Trust and SDSI, can be used to manage the trust
relationships. Each of them has its advantages and
disadvantages. However from the aspects of authority and
credibility, CA is regarded as the most applicable one.

Though the CA model is usually considered a centralized
one, which seems contrary to the concept of decentralization in
CCN, we still can partition the governance. We let the local CA
manage a small scope of users, which is similar to the multi-
level CA in PKI. In this model, the scopes of CAs are mapped
to the namespaces in CCN. Another problem worrying people
is the transitive trust in the CA model. We define that the trust
is not biased against the subjects. CA as a public observer, it
judges the possibility a user may do harm to the others. In order
to prevent the CA being compromised, more than one CA are
used to administer a region. So the transitive trust can be
acceptable in such case.

The Web of Trust model has eliminated the transitive trust,
but when building the trust web, the users choose the
introducers mostly by their subjective judgments, as well as set
the trust level for introducers. This may cause inaccurate
judgments on credibility of introducers, and will further make
the whole trust web more untrustworthy. But the advantage of
Web of Trust is the high flexibility, which makes it can
incorporate with the CA as fully-trusted introducers to enhance
its reliability.

As a distributed trust model, the SDSI model allows groups
of users autonomously manage their trust and therefore
discards the centralized management. It’s relatively easy to be
implemented in the CCN network. The advantage of SDSI is
simplicity and flexibility, and it also has some global
“distinguished root” principles quite similar to the root CA in
PKI. But due to the lack of a consolidated authentication
standard, the users from different local name spaces have
limited knowledge to establish links to each other. In this case
global organizations are still needed as introducers.

To sum up, the CA model can provide a more precise and
reliable user authentication service in a security-demanding
situation and it’s more convenient for global certificate
management. By leading the CA model into CCN, we can
build a trust profile for each user and make it public. It will
result in a fair and open community to restrict the users to
doing harms.

C. Trust Evaluation
With a small scale system test in the practical environment,

we found there’re still some problems existing in our system.
For example, after introducing user certificate authority, we can
easily tell the identity of content publisher. But to a newly
registered user, we know nothing about its reliability. In the
physical world, different user has different credibility, and the
credibility may vary with time. From this perspective, we need

 1057

MoC2.2

to build a whole trust evaluation mechanism. Abdul-Rahman [8]
and Ziegler [9] has proposed some very valuable methods on
quantifying the trust values in the Web of Trust model. We
may first create the initial trust for a user after verifying his
legality by the CA, and then further classify him by
trustworthiness into a certain class. For example, we can divide
the users into four trust classes—unknown, untrustworthy,
marginal and fully-trusted. This is to help the users better
recognize the credibility of a certain user. Because in our
system there are explicit relations of friendship among users,
just like the links in social network, it’s possible to introduce
the mechanism of recommendation. We may leverage the user
friendship to recommend new reliable users for current users to
build new trust relationships. Similar to the voting mechanism
in the Web of Trust, the users in our system can rate other users.
For a user who has been rated for many times and has a relative
high grade is considered to be more trustworthy. The grade
determines which trust class the user belongs to. This method
has the users endorsed by the CA and also supervised by the
other users, so it makes the trust more comprehensive.

V. CONCLUSION
In recent years, the content security problems have been

emerging with the increasingly hot topic of information-centric
networking which is attracting more and more discussions.
Designing a security paradigm for this new kind of networking
to ensure the privacy, integrity and security of network contents
is always an issue concerned by people and needs to be solved.
In this paper, we proposed and implemented a user
authentication scheme over CCN which has a good actual
result in particular CCN application. The certificate
management mechanism in it leverages the decentralization
characteristics of CCN, so it has some advantages over
traditional CA when stores and distributes certificates. The
scheme embodies the thought of applying the CA trust model
into the CCN network, and it can be further applied to the
entire CCN network as a common model for user
authentication. We also made a discussion on the idea of
incorporating CA, Web of Trust and SDSI to make the user

authentication more decentralized in CCN and evaluate the
trust of users with a quantitative method.

ACKNOWLEDGMENT
This work was supported by NSFC (No:61103027),

GuangDong Gov Project (2011A090200063) and
Shenzhen Gov Project (JC201104210107A and JC2011042
10117A) and PKUSZ Dean’s Student Research Project
(No.2010004).

We would like to express our gratitude to Prof. Xiaoming
Li and Dr. Beichuan Zhang, who had provided us so much help
and guidance on CCN. We also would like to thank Prof. Lixia
Zhang and Van Jacobson who take charge of the CCN project
and held the community conference. We had a deeper insight
into the CCN principles through the communications.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, "Networking Named Content," ACM CoNEXT’09,
Rome, Dec. 2009.

[2] D. Smetters and V. Jacobson, "Securing Network Content," PARC Tech
Report, October 2009.

[3] A. Abdul-Rahman. "The PGP Trust Model," EDI-Forum: the Journal of
Electronic Commerce, Apr. 1997.

[4] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
"SPKI certificate theory," IETF Network Working Group RFC 1693,
September 1999.

[5] R. L. Rivest and B. Lampson. "SDSI - A Simple Distributed Security
Infrastructure," Technical report, MIT, 1996.

[6] D. Smetters, P. Golle, and J. Thornton, "CCNx Access Control
Specifications," PARC, 2010.

[7] I. Jeun, J. Park, T. Choi, S. Park, B. Park, B. Lee, and Y. Shin, "A Best
Practice for Root CA Key Update in PKI," In ACNS, pages 278–291,
2004.

[8] A. Abdul-Rahman and S. Hailes, "A Distributed Trust Model," In ACM
New Security Paradigms Workshop, 1997.

[9] C. Ziegler and G. Lausen, "Propagation models for trust and distrust in
social network," Information Systems Frontiers, Vol. 7, No. 4-5, Dec.
2005, pp. 337–358.

 1058

MoC2.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

